請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
| dc.contributor.author | Hsiang-Ling Huang | en |
| dc.contributor.author | 黃翔鈴 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:23:53Z | - |
| dc.date.available | 2015-09-19 | |
| dc.date.available | 2021-05-17T09:23:53Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | 1. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1983. 1(8336): p. 1273-5.
2. Kusters, J.G., A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev, 2006. 19(3): p. 449-90. 3. Owen, R.J., Helicobacter--species classification and identification. Br Med Bull, 1998. 54(1): p. 17-30. 4. Bauerfeind, P., et al., Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut, 1997. 40(1): p. 25-30. 5. Van den Brink, G.R., et al., H pylori colocalises with MUC5AC in the human stomach. Gut, 2000. 46(5): p. 601-7. 6. Blaser, M.J., Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep, 2006. 7(10): p. 956-60. 7. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47. 8. Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999. 397(6715): p. 176-80. 9. Oh, J.D., et al., The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A, 2006. 103(26): p. 9999-10004. 10. Brown, L.M., Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev, 2000. 22(2): p. 283-97. 11. Muhsen, K., et al., Presence of Helicobacter pylori in a sibling is associated with a long-term increased risk of H. pylori infection in Israeli Arab children. Helicobacter, 2010. 15(2): p. 108-13. 12. Malaty, H.M., et al., Transmission of Helicobacter pylori infection. Studies in families of healthy individuals. Scand J Gastroenterol, 1991. 26(9): p. 927-32. 13. Goh, K.L., et al., Epidemiology of Helicobacter pylori infection and public health implications. Helicobacter, 2011. 16 Suppl 1: p. 1-9. 14. Everhart, J.E., Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol Clin North Am, 2000. 29(3): p. 559-78. 15. Graham, D.Y., et al., Epidemiology of Helicobacter pylori in an asymptomatic population in the United States. Effect of age, race, and socioeconomic status. Gastroenterology, 1991. 100(6): p. 1495-501. 16. Malaty, H.M., et al., Helicobacter pylori infection in preschool and school-aged minority children: effect of socioeconomic indicators and breast-feeding practices. Clin Infect Dis, 2001. 32(10): p. 1387-92. 17. 林肇堂, 幽門螺旋桿菌之流行病學. Vol. 6. 2002, 台灣: 台灣醫學. 18. Nakajima, S., et al., Changes in the prevalence of Helicobacter pylori infection and gastrointestinal diseases in the past 17 years. J Gastroenterol Hepatol, 2010. 25 Suppl 1: p. S99-S110. 19. Robinson, K., R.H. Argent, and J.C. Atherton, The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol, 2007. 21(2): p. 237-59. 20. Wilson, K.T. and J.E. Crabtree, Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology, 2007. 133(1): p. 288-308. 21. Appelmelk, B.J., et al., Why Helicobacter pylori has Lewis antigens. Trends Microbiol, 2000. 8(12): p. 565-70. 22. Ernst, P.B. and B.D. Gold, The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol, 2000. 54: p. 615-40. 23. Suerbaum, S. and P. Michetti, Helicobacter pylori infection. N Engl J Med, 2002. 347(15): p. 1175-86. 24. Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr, accessed on 16/7/2012. 25. Kelley, J.R. and J.M. Duggan, Gastric cancer epidemiology and risk factors. J Clin Epidemiol, 2003. 56(1): p. 1-9. 26. Forman, D. and V.J. Burley, Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol, 2006. 20(4): p. 633-49. 27. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut, 2001. 49(3): p. 347-53. 28. Kamangar, F., et al., Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J Natl Cancer Inst, 2006. 98(20): p. 1445-52. 29. Forman, D., et al., Geographic association of Helicobacter pylori antibody prevalence and gastric cancer mortality in rural China. Int J Cancer, 1990. 46(4): p. 608-11. 30. Ekstrom, A.M., et al., Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology, 2001. 121(4): p. 784-91. 31. International Agency for Research on Cancer. 1994. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 61: schistosomes, liver flukes and Helicobacter pylori. International Agency for Research on Cancer, Lyon, France. 32. Ubukata, H., et al., Why is the coexistence of gastric cancer and duodenal ulcer rare? Examination of factors related to both gastric cancer and duodenal ulcer. Gastric Cancer, 2011. 14(1): p. 4-12. 33. Fischer, A., O.T. Clagett, and D.J. Mc, Coexistent duodenal ulcer and gastric malignancy. Surgery, 1947. 21(2): p. 168-74. 34. Miwa, M., et al., The coexistence of gastric cancer and duodenal ulcers. Tokai J Exp Clin Med, 1981. 6(2): p. 203-5. 35. Go, M.F. and D.Y. Graham, How does Helicobacter pylori cause duodenal ulcer disease: the bug, the host, or both? J Gastroenterol Hepatol, 1994. 9 Suppl 1: p. S8-10. 36. Ricci, C., J. Holton, and D. Vaira, Diagnosis of Helicobacter pylori: invasive and non-invasive tests. Best Pract Res Clin Gastroenterol, 2007. 21(2): p. 299-313. 37. Chan, F.K., et al., Eradication of Helicobacter pylori and risk of peptic ulcers in patients starting long-term treatment with non-steroidal anti-inflammatory drugs: a randomised trial. Lancet, 2002. 359(9300): p. 9-13. 38. Bury-Mone, S., et al., Presence of active aliphatic amidases in Helicobacter species able to colonize the stomach. Infect Immun, 2003. 71(10): p. 5613-22. 39. Bury-Mone, S., et al., The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol, 2001. 42(4): p. 1021-34. 40. van Vliet, A.H., et al., Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun, 2001. 69(8): p. 4891-7. 41. Eaton, K.A., et al., Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun, 1991. 59(7): p. 2470-5. 42. Yoshiyama, H. and T. Nakazawa, Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect, 2000. 2(1): p. 55-60. 43. Montecucco, C. and R. Rappuoli, Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol, 2001. 2(6): p. 457-66. 44. Schreiber, S., et al., The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A, 2004. 101(14): p. 5024-9. 45. Muotiala, A., et al., Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun, 1992. 60(4): p. 1714-6. 46. Bliss, C.M., Jr., et al., Helicobacter pylori lipopolysaccharide binds to CD14 and stimulates release of interleukin-8, epithelial neutrophil-activating peptide 78, and monocyte chemotactic protein 1 by human monocytes. Infect Immun, 1998. 66(11): p. 5357-63. 47. Cover, T.L. and M.J. Blaser, Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem, 1992. 267(15): p. 10570-5. 48. Fitchen, N., et al., All subtypes of the cytotoxin VacA adsorb to the surface of Helicobacter pylori post-secretion. J Med Microbiol, 2005. 54(Pt 7): p. 621-30. 49. Czajkowsky, D.M., et al., The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2001-6. 50. Amieva, M.R. and E.M. El-Omar, Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology, 2008. 134(1): p. 306-23. 51. Censini, S., et al., cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14648-53. 52. Shibata, W., et al., CagA protein secreted by the intact type IV secretion system leads to gastric epithelial inflammation in the Mongolian gerbil model. J Pathol, 2006. 210(3): p. 306-14. 53. Stein, M., R. Rappuoli, and A. Covacci, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1263-8. 54. Kuipers, E.J., et al., Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst, 1995. 87(23): p. 1777-80. 55. Alm, R.A., et al., Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun, 2000. 68(7): p. 4155-68. 56. Sheu, B.S., et al., Helicobacter pylori colonization of the human gastric epithelium: a bug's first step is a novel target for us. J Gastroenterol Hepatol, 2010. 25(1): p. 26-32. 57. Mahdavi, J., et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 2002. 297(5581): p. 573-8. 58. Yamaoka, Y., et al., Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut, 2006. 55(6): p. 775-81. 59. Unemo, M., et al., The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem, 2005. 280(15): p. 15390-7. 60. Ilver, D., et al., Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998. 279(5349): p. 373-7. 61. Prinz, C., et al., Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res, 2001. 61(5): p. 1903-9. 62. Rad, R., et al., The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J Immunol, 2002. 168(6): p. 3033-41. 63. Guruge, J.L., et al., Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3925-30. 64. Colbeck, J.C., et al., Genotypic profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect Immun, 2006. 74(7): p. 4375-8. 65. Yamaoka, Y., D.H. Kwon, and D.Y. Graham, A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A, 2000. 97(13): p. 7533-8. 66. Dossumbekova, A., et al., Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J Infect Dis, 2006. 194(10): p. 1346-55. 67. Tabassam, F.H., D.Y. Graham, and Y. Yamaoka, OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization. Cell Microbiol, 2008. 10(4): p. 1008-20. 68. Tabassam, F.H., D.Y. Graham, and Y. Yamaoka, Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cell Microbiol, 2009. 11(1): p. 70-82. 69. Odenbreit, S., et al., Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol Microbiol, 1999. 31(5): p. 1537-48. 70. de Jonge, R., et al., Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J Med Microbiol, 2004. 53(Pt 5): p. 375-9. 71. Lu, H., et al., Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J Biol Chem, 2007. 282(9): p. 6242-54. 72. Senkovich, O.A., et al., Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun, 2011. 79(8): p. 3106-16. 73. Penque, D., Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin. Appl., 2009. 3(2): p. 155-72. 74. Rifai, N., M.A. Gillette, and S.A. Carr, Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol, 2006. 24(8): p. 971-83. 75. Yan, J., Y.F. Mao, and Z.X. Shao, Frequencies of the expression of main protein antigens from Helicobacter pylori isolates and production of specific serum antibodies in infected patients. World J Gastroenterol, 2005. 11(3): p. 421-5. 76. Chiarini, A., et al., Prevalence of virulence-associated genotypes of Helicobacter pylori and correlation with severity of gastric pathology in patients from western Sicily, Italy. Eur J Clin Microbiol Infect Dis, 2009. 28(5): p. 437-46. 77. Gao, L., et al., Helicobacter pylori infection and gastric cancer risk: evaluation of 15 H. pylori proteins determined by novel multiplex serology. Cancer Res, 2009. 69(15): p. 6164-70. 78. C-S, C., T. S-C, and Z. H, Protein microarray technologies., in Proteomics (Methods Express Series)2008. p. 183-205. 79. Zhang, W., I. Shmulevich, and J. Astola, Microarray Quality Control2004. 80. Zhu, H., et al., Global analysis of protein activities using proteome chips. Science, 2001. 293(5537): p. 2101-5. 81. Chen, C.S., et al., A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 2008. 5(1): p. 69-74. 82. Chen, C.S., et al., Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol Cell Proteomics, 2009. 8(8): p. 1765-76. 83. Song, Q., et al., Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res, 2010. 9(1): p. 30-9. 84. Lin, Y.F., et al., Duodenal ulcer-related antigens from Helicobacter pylori: immunoproteome and protein microarray approaches. Mol Cell Proteomics, 2007. 6(6): p. 1018-26. 85. Smith, T.G., et al., Direct analysis of the extracellular proteome from two strains of Helicobacter pylori. Proteomics, 2007. 7(13): p. 2240-5. 86. Hartinger, J., et al., 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem, 1996. 240(1): p. 126-33. 87. Lin, Y.F., et al., Comparative immunoproteomics of identification and characterization of virulence factors from Helicobacter pylori related to gastric cancer. Mol Cell Proteomics, 2006. 5(8): p. 1484-96. 88. Jungblut, P.R., et al., Comparative proteome analysis of Helicobacter pylori. Mol Microbiol, 2000. 36(3): p. 710-25. 89. Kokkola, A., et al., Spontaneous disappearance of Helicobacter pylori antibodies in patients with advanced atrophic corpus gastritis. APMIS, 2003. 111(6): p. 619-24. 90. Mitchell, H., et al., Immunoblotting using multiple antigens is essential to demonstrate the true risk of Helicobacter pylori infection for gastric cancer. Aliment Pharmacol Ther, 2008. 28(7): p. 903-10. 91. Magalhaes, A. and C.A. Reis, Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res, 2010. 43(7): p. 611-8. 92. Zhu, H., et al., Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci U S A, 2006. 103(11): p. 4011-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7010 | - |
| dc.description.abstract | 幽門螺旋桿菌為人類的病原菌,是一種寄生於人類消化道的革蘭氏陰性菌,並且造成了胃發炎、胃潰瘍、十二指腸潰瘍及胃癌等消化道疾病。有趣的是,臨床統計結果發現受幽門螺旋桿菌感染的病人其得到十二指腸潰瘍或是胃癌是兩條分歧的臨床走向。而之前有一些研究顯示幽門螺旋桿菌的膜蛋白對於菌的致病性及和宿主之間的辨認都扮演了重要的角色,因此我們的研究主要就是希望能從幽門螺旋桿菌的膜蛋白質中找到胃癌相關的生物標記分子,並期望能發展出一個新的平台以應用於臨床上,幫助簡易且快速的診斷出受幽門螺旋桿菌感染的胃癌病患,並能與十二指腸潰瘍病患做區隔。
過去實驗室比較從胃癌及十二指腸潰瘍病人體內分離出來的幽門螺旋桿菌菌株之膜蛋白質體,我們將目標放在於胃癌菌株中表現量高於十二指腸潰瘍菌株的蛋白質,並鑑定到了57個蛋白質。而在我們的實驗中,我們發現了四個膜蛋白具有潛力能做為生物標記分子,這四個膜蛋白為: outer inflammatory protein (OipA), adherence-associated lipoprotein A (AlpA), sialic acid-binding adhesin (SabA)與blood group antigen binding adhesin (BabB),這四個蛋白都被報導為黏著因子,與幽門螺旋桿菌貼附於胃表皮細胞及胃黏膜相關。我們將這四個膜蛋白基因進行質體建構並且純化出重組蛋白,再利用西方墨點法將重組蛋白與正常人或胃發炎、十二指腸潰瘍及胃癌病人的血清進行反應,結果顯示OipA, AlpA, SabA及BabB這四個膜蛋白在胃癌這組中的免疫反應程度都高於十二指腸潰瘍的組別,且有顯著差異,經過更進一步的統計後發現OipA, SabA與BabB這三個膜蛋白與胃癌病人有高度相關性。此外,我們還將四個膜蛋白合併在一起進行檢測發現到隨著病人辨認到的抗原膜蛋白的個數增加,能區分胃癌與十二指腸潰瘍病人的效果更加顯著,勝算比從只認到一個抗原的0.75 (0.26–2.15),到認到兩個抗原的3.00 (0.95–9.53),再到認到三個抗原或是全部抗原都有認到的6.33 (1.29–31.1)。從以上的結果我們認為,我們所選擇的這四個膜蛋白是具潛力的胃癌相關之幽門螺旋桿菌生物標記分子。 接著,我們為了發展出一個能在臨床上快速又方便的診斷方法,我們選擇以蛋白質晶片為基礎並測試了適合膜蛋白點印於晶片上的條件,以製做出胃癌相關之幽門螺旋桿菌膜蛋白質抗原晶片,並且以正常人或十二指腸潰瘍及胃癌的病人血清與膜蛋白晶片進行反應,我們發現到膜蛋白晶片的結果與前一部份以西方墨點法檢測的結果相符合,OipA, SabA及BabB確實能夠將胃癌的病人與十二指腸潰瘍病患及正常人區分開來。未來我們希望能夠利用我們發展的胃癌相關之幽門螺旋桿菌膜蛋白質抗原晶片去偵測病人血清內多種抗體的反應程度,並期望此平台及結合複合型生物標記分子的概念能有效應用於臨床診斷上。 | zh_TW |
| dc.description.abstract | Helicobacter pylori (H. pylori), a human pathogen, is a gram-negative bacterium that colonizes in the host gastroduodenal tract, causing some variant diseases like gastritis, gastric ulcer (GU), duodenal ulcer (DU) and gastric cancer (GC). Interestingly, DU and GC are considered as clinically divergent events. Some previous studies suggested that the outer membrane proteins of H. pylori played important roles in pathogenesis and host recognition. Thus, we aimed to focus on discovering the outer membrane proteins of H. pylori as GC-related biomarkers, and to develop a new platform which is rapid and easy for diagnosis of screening GC patients from DU patients infected by H. pylori.
In our previous study, we compared the membrane proteome of two clinical H. pylori strains, one strain from GC patients and the other strain from DU patients. We identified 57 proteins which the expression levels of GC strain were higher than that of DU strain. In this study, we found four membrane proteins as potential biomarkers. The four proteins were outer inflammatory protein (OipA), adherence-associated lipoprotein A (AlpA), sialic acid-binding adhesin (SabA) and blood group antigen binding adhesin (BabB). These candidates were reported to be responsible for the adhesion of H. pylori to the host gastric epithelium and mucosa. We cloned and purified the recombinant membrane proteins. Using immunoblot, the purified proteins were probed with serum samples from gastritis, DU, GC patients and normal controls. The results revealed that OipA, AlpA, SabA and BabB showed significantly higher immuno-reactivity in GC patients than that in DU patients, and OipA, SabA and BabB were strongly related to GC. In addition, we found that the use of multiple antigens improved the discrimination between patients with GC and those with DU as the odds ratios increased from 0.75 (0.26–2.15) for seropositivity for any one antigen alone to 3.00 (0.95–9.53) for two of the four antigens and to 6.33 (1.29–31.1) for three antigens or all four antigens. These results suggested that these adhesion molecules we selected may be potential H. pylori GC-associated biomarkers. Moreover, to develop a faster and more convenient platform for diagnosis, we tested the condition for printing the purified recombinant membrane proteins onto glass slides to create GC-related antigen membrane protein chip and the chip was incubated with serum from DU, GC patients and normal controls. The results were significantly consistent with our results of immunoblot that OipA, SabA and BabB were potential biomarkers for specifically distinguishing GC from DU and healthy controls. In the future, we expect to use GC-related antigen membrane protein chip to detect antibody patterns in sera of patients and the membrane protein chip combined with the idea of multiple biomarkers can be used for diagnostic application. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:23:53Z (GMT). No. of bitstreams: 1 ntu-101-R99442010-1.pdf: 6056034 bytes, checksum: 97aafeea7a5f0030548cca3cb5191c09 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 摘要 iii Abstract v 縮寫 vii 第一章 導論 1 第一節 幽門螺旋桿菌的介紹與研究 1 1.1 幽門螺旋桿菌的型態與特徵 1 1.2 幽門螺旋桿菌於流行病學(epidemiology)上之角色 2 1.3 幽門螺旋桿菌所引發之宿主免疫反應與相關疾病 3 1.4 幽門螺旋桿菌之致病因子(virulence factors) 7 1.5 幽門螺旋桿菌之膜蛋白(outer membrane protein, OMP)與黏著因子(adhesin)的重要性 10 第二節生物標記分子(biomarker)與蛋白質微陣列晶片(protein microarray chip)之應用 14 2.1 生物標記分子 14 2.2 蛋白質微陣列晶片 15 第三節 研究動機、目的與策略 17 3.1 研究動機 17 3.2 研究目的 18 3.3 研究策略 18 第二章 實驗材料 20 第一節 幽門螺旋桿菌菌株 20 第二節 血清樣本 20 第三節 大腸桿菌及質體 20 第四節 酵素 20 第五節 抗體 21 第六節 藥品 21 第七節 試劑組 23 第八節 重要儀器 24 第三章 實驗方法 26 第一節 幽門螺旋桿菌標的基因之質體建構(plasmid construction)與重組膜蛋白質的表現與純化 26 1.1 標的基因之質體建構 26 1.2 重組膜蛋白質之表現與純化 31 1.3 十二烷基磺酸鈉-聚丙烯醯胺膠電泳法 (Sodium dodecyl sulfate -polyacrylamide gel electrophoresis, SDS-PAGE ) 34 1.4 以質譜儀鑑定重組膜蛋白質之身份 38 第二節 幽門螺旋桿菌重組膜蛋白質之免疫特性分析 39 2.1 西方墨點法 (Western blotting) 39 2.2 統計分析 (Statistical analysis) 41 第三節 開發胃癌相關之幽門螺旋桿菌抗原膜蛋白質微陣列晶片(membrane protein microarray chip) 41 3.1 膜蛋白質樣品的處理 (Sample preparation) 42 3.2 點印蛋白質樣品至晶片表面 (Printing of protein chips) 42 3.3 蛋白質晶片試驗 (Protein chip assay) 43 3.4 晶片影像掃描及分析 (Chip image scanning and analysis) 44 第四章 實驗結果 46 第一節 幽門螺旋桿菌標的基因之質體建構與重組膜蛋白質的表現與純化 46 1.1 膜蛋白質OipA, AlpA, SabA及BabB之基因質體建構 46 1.2 膜蛋白質OipA, AlpA, SabA及BabB的表現與純化 46 第二節 幽門螺旋桿菌重組標的膜蛋白質之免疫特性分析 47 2.1 膜蛋白質OipA, AlpA, SabA及BabB之免疫原性(immunogenicity)測試 47 2.2 膜蛋白質OipA, AlpA, SabA及BabB之免疫特性分析 48 第三節 胃癌相關之幽門螺旋桿菌抗原膜蛋白質微陣列晶片(membrane protein microarray chip)平台的開發 51 3.1 膜蛋白質晶片之最佳化條件測試 51 3.2胃癌相關之幽門螺旋桿菌抗原膜蛋白質晶片與血清的反應 53 第四節 實驗結果總結 54 第五章 討論 56 第一節 胃癌相關之幽門螺旋桿菌膜蛋白生物標記分子與臨床診斷之意義 56 第二節 胃癌相關之幽門螺旋桿菌抗原膜蛋白晶片與臨床診斷之意義 60 第三節 未來展望 62 第六章 參考文獻 63 圖表 70 附錄 95 | |
| dc.language.iso | zh-TW | |
| dc.title | 鑑定幽門螺旋桿菌中之生物標記分子及開發胃癌診斷之膜蛋白質晶片 | zh_TW |
| dc.title | Identification of Potential Biomarkers from Helicobacter pylori and Development of Membrane Protein Chips for Gastric Cancer Diagnosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳健生(Chien-Sheng Chen),黃楓婷(Feng-Ting Huang) | |
| dc.subject.keyword | 幽門螺旋桿菌,胃癌,黏著因子,生物標記分子,膜蛋白質晶片, | zh_TW |
| dc.subject.keyword | Helicobacter pylori,gastric cancer,adhesion molecule,biomarker,membrane protein chip, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 5.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
