請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | |
| dc.contributor.author | Pei-Ling Weng | en |
| dc.contributor.author | 翁珮玲 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:43:32Z | - |
| dc.date.available | 2028-02-05 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-05 | |
| dc.identifier.citation | [1] Nitin Agarwal, Huan Liu, Lei Tang, Philip S. Yu. Identifying the influential bloggers in a community. Proceedings of the 2008 International Conference on Web Search and Data Mining, pages 207-218, 2008.
[2] Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-499, 1994. [3] James C. Bezdek, Robert Ehrlich, William Full. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, Vol. 10, No. 2-3, pages 191-203, 1984. [4] David M. Blei, Andrew Y. Ng, Michael I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, Vol. 3, pages 993-1022, 2003. [5] An-Jung Cheng, Yan-Ying Chen, Yen-Ta Huang, Winston H. Hsu, Hong-Yuan Mark Liao. Personalized travel recommendation by mining people attributes from community-contributed photos. Proceedings of the 19th ACM International Conference on Multimedia, pages 83-92, 2011. [6] Emilio Ferrara, Roberto Interdonato, Andrea Tagarelli. Online popularity and topical interests through the lens of Instagram. Proceedings of the 25th ACM Conference on Hypertext and Social Media, pages 24-34, 2014. [7] J. A. Hartigan, M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 1, pages 100-108, 1979. [8] Yuheng Hu, Lydia Manikonda, Subbarao Kambhampati. What we Instagram: A first analysis of Instagram photo content and user types. Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, pages 595-598, 2014. [9] Jin Yea Jang, Kyungsik Han, Dongwon Lee. No reciprocity in “liking” photos: Analyzing like activities in Instagram. Proceedings of the 26th ACM Conference on Hypertext & Social Media, pages 273-282, 2015. [10] Takeshi Kurashima, Tomoharu Iwata, Takahide Hoshide, Noriko Takaya, Ko Fujimura. Geo topic model: Joint modeling of user’s activity area and interests for location recommendation. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pages 375-384, 2013. [11] Takeshi Kurashima, Tomoharu Iwata, Go Irie, Ko Fujimura. Travel route recommendation using geotags in photo sharing sites. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pages 579-588, 2010. [12] Xutao Li, Tuan-Anh Nguyen Pham, Gao Cong, Quan Yuan, Xiao-Li Li, Shonali Krishnaswamy. Where you Instagram? Associating your Instagram photos with points of interest. Proceedings of the 24th ACM International Conference on Information and Knowledge Management, pages 1231-1240, 2015. [13] David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, Andrew McCallum. Optimizing semantic coherence in topic models. Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 262-272, 2011. [14] Radu-Andrei Negoescu, Daniel Gatica-Perez. Analyzing Flickr Groups. Proceedings of the International Conference on Content-Based Image and Video Retrieval, pages 417-426, 2008. [15] Michael Steinbach, George Karypis, Vipin Kumar. A comparison of document clustering techniques. In Proceedings of the KDD Workshop on Text Mining, pages 525-526, 2000. [16] Chih-Yuan Sun, Anthony J.T. Lee. Tour recommendations by mining photo sharing social media. Decision Support Systems, Vol. 101, pages 28-39, 2017. [17] Aditya Pal, Amaç Herdagdelen, Sourav Chatterji, Sumit Taank, Deepayan Chakrabarti. Discovery of Topical Authorities in Instagram. Proceedings of the 25th International Conference on World Wide Web, pages 1203-1213, 2016. [18] Yanwei Pang, Qiang Hao, Yuan Yuan, Tanji Hu, Rui Cai, Lei Zhang. Summarizing tourist destinations by mining user-generated travelogues and photos. Computer Vision and Image Understanding, Vol. 115, No. 3, pages 352-363, 2011. [19] Xiangyu Wang, Yi-Liang Zhao, Liqiang Nie, Yue Gao, Weizhi Nie, Zheng-Jun Zha, Tat-Seng Chua. Semantic-based location recommendation with multimodal venue semantics. IEEE Transactions on Multimedia, Vol. 17, No. 3, pages 409-419, 2015. [20] Zhijun Yin, Liangliang Cao, Jiawei Han, Chengxiang Zhai, Thomas Huang. Geographical topic discovery and comparison. Proceedings of the 20th International Conference on World Wide Web, pages 247-256, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70101 | - |
| dc.description.abstract | 近年來,越來越多人在照片分享社交網絡上分享他們的生活和照片。因此,我們提出了一個架構,藉由探勘照片分享社交網絡中用戶生成的內容,來了解使用者行為以及使用者行為如何隨時間變化。我們的架構包含四個階段。第一階段,針對每位使用者,我們從用戶生成的內容萃取出四個使用者屬性,包括活躍度、認可度、使用者主題和地理主題。第二階段,針對每位使用者,我們利用模糊C平均分群演算法,分別將具有相似活躍度及認可度的使用者分群。第三階段,針對每位使用者,我們將其機率夠高的使用者主題轉換成一個使用者主題的集合,再利用先驗演算法從所有的使用者主題集合,探勘出使用者主題的頻繁樣式。同樣地,針對每位使用者,我們將其機率夠高的地理主題轉換成一個地理主題的集合,再利用先驗演算法從所有的地理主題集合,探勘出地理主題的頻繁樣式。最後一階段,我們透過分群出的群集和探勘出的頻繁樣式之間的關聯,來分析使用者行為。實驗結果顯示,我們提出的架構能夠辨認出多樣使用者的行為,並且提供能應用於管理上的見解與意涵。 | zh_TW |
| dc.description.abstract | More and more people share their life and photos on online photo sharing social networks. Therefore, in this thesis, we propose a framework to mine user behavior from user-generated contents on a photo sharing social network to help better understand user behavior and discover how user behavior changes over time. The proposed framework contains four phases. First, we extract four user’s attributes from user-generated contents for each user namely, activeness, recognition, user topics and geographical topics. Second, we employ the fuzzy c-means clustering method to respectively cluster together similar activeness attributes and similar recognition attributes. Third, for each user, we convert the user topics into an UT-set and apply the Apriori method to mine frequent UT-patterns. Similarly, we convert the geographical topics of each user into a GT-set and apply the Apriori method to mine frequent GT-patterns. Finally, we analyze user behavior by investigating the relationships among clusters formed and frequent patterns mined. The experiment results show that the proposed framework can identify user behavior for various kinds of users, and provide valuable managerial insights for managerial applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:43:32Z (GMT). No. of bitstreams: 1 ntu-107-R04725011-1.pdf: 753134 bytes, checksum: 1e7d9e465fba5f6d45367d71afb7ee76 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Related Work 3 Chapter 3 The Proposed Framework 6 3.1 User attributes 7 3.2 Clustering activeness and recognition attributes 10 3.3 Mining frequent patterns of user and geographical topics 10 3.4 Analyzing user behavior from clusters obtained and frequent patterns mined 12 Chapter 4 Experiment Results 17 4.1 Data collection 17 4.2 Number of user and location topics 17 4.3 Activeness and recognition clusters 19 4.4 Frequent patterns of user and geographical topics 21 4.5 User behavior analysis 21 4.5.1 User behavior without time attribute 22 4.5.2 User behavior with time attribute 40 Chapter 5 Conclusions and Future Work 44 References 47 Appendix A 50 | |
| dc.language.iso | en | |
| dc.subject | 使用者行為分析 | zh_TW |
| dc.subject | 照片分享社交網絡 | zh_TW |
| dc.subject | 隱含狄利克雷分布模型 | zh_TW |
| dc.subject | 模糊C平均分群演算法 | zh_TW |
| dc.subject | 先驗演算法 | zh_TW |
| dc.subject | 頻繁樣式 | zh_TW |
| dc.subject | fuzzy c-means clustering method | en |
| dc.subject | user behavior analysis | en |
| dc.subject | Latent Dirichlet Allocation model | en |
| dc.subject | frequent pattern | en |
| dc.subject | Apriori method | en |
| dc.subject | photo sharing social network | en |
| dc.title | 探勘照片分享社交網絡中使用者行為 | zh_TW |
| dc.title | Mining User Behavior on Photo Sharing Social Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳怡瑾,盧信銘 | |
| dc.subject.keyword | 使用者行為分析,照片分享社交網絡,隱含狄利克雷分布模型,模糊C平均分群演算法,先驗演算法,頻繁樣式, | zh_TW |
| dc.subject.keyword | user behavior analysis,photo sharing social network,Latent Dirichlet Allocation model,fuzzy c-means clustering method,Apriori method,frequent pattern, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201800312 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-05 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 735.48 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
