Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁宗蘇(Tzung-Su Ding)
dc.contributor.authorKuang-Ping Yuen
dc.contributor.author尤光平zh_TW
dc.date.accessioned2021-05-11T04:59:48Z-
dc.date.available2019-08-06
dc.date.available2021-05-11T04:59:48Z-
dc.date.copyright2019-08-06
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citationAmthor, J. S., & Baldocchi, D. D. (2001). Terrestrial higher plant respiration and net primary production. In: Roy, J., Saugier, B., Mooney, A. H., (eds) Terrestrial Global Productivity, 33–59, Academic Press, New York.
Andrew, M. E., Wulder, M. A., Coops, N. C., & Baillargeon, G. (2012). Beta‐diversity gradients of butterflies along productivity axes. Global Ecology and Biogeography, 21(3), 352–364.
As-syakur, A., Adnyana, I., Arthana, I. W., & Nuarsa, I. W. (2012). Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sensing, 4(10), 2957–2970.
Barlow, J., Gardner, T. A., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., & Hoogmoed, M. S. (2007). Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences, 104(47), 18555–18560.
Basualdo, C. V. (2011). Choosing the best non-parametric richness estimator for benthic macroinvertebrates databases. Revista de la Sociedad Entomológica Argentina, 70(1–2), 27-38.
Berry, S., Mackey, B., & Brown, T. (2007). Potential applications of remotely sensed vegetation greenness to habitat analysis and the conservation of dispersive fauna. Pacific Conservation Biology, 13(2), 120–127.
Bicudo, D. C., Tremarin, P. I., Almeida, P. D., Zorzal-Almeida, S., Wengrat, S., Faustino, S. B., & Morales, E. A. (2016). Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil. Diatom Research, 31(3), 199–215.
Birkhofer, K., & Wolters, V. (2012). The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography, 21(2), 100–108.
Buchholz, S., Hannig, K., Möller, M., & Schirmel, J. (2018). Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands. Urban Ecosystems, 21(6), 1139–1149.
Cardoso, P., Pekár, S., Jocqué, R., & Coddington, J. A. (2011). Global patterns of guild composition and functional diversity of spiders. PloS one, 6(6), e21710.
Chapman, A. D. (2009). Numbers of living species in Australia and the world. Canberra, Australia: Australian Government.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11(2), 356–370.
Coops, N. C., Wulder, M. A., & Iwanicka, D. (2009). Demonstration of a satellite-based index to monitor habitat at continental-scales. Ecological Indicators, 9(5), 948–958.
Coops, N. C., Wulder, M. A., & Iwanicka, D. (2009). Exploring the relative importance of satellite-derived descriptors of production, topography and land cover for predicting breeding bird species richness over Ontario, Canada. Remote Sensing of Environment, 113(3), 668–679.
Coops, N. C., Waring, R. H., Wulder, M. A., Pidgeon, A. M., & Radeloff, V. C. (2009). Bird diversity: a predictable function of satellite‐derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography, 36(5), 905–918.
Dahirel, M., De Cock, M., Vantieghem, P., & Bonte, D. (2018). Urbanization‐driven changes in web building and body size in an orb web spider. Journal of Animal Ecology, 87(6), 1–13.
De Mas, E., Chust, G., Pretus, J. L., & Ribera, C. (2009). Spatial modelling of spider biodiversity: matters of scale. Biodiversity and Conservation, 18(7), 1945–1962.
Denno, R. F., Gratton, C., Döbel, H., & Finke, D. L. (2003). Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology, 84(4), 1032–1044.
Fan, W. H., (2007). Interpretation of the habitat of Fu-Yang urban park in Taipei by using the community composition of epigaeic beetles and spiders (Coleoptera and Araneae). Unpublished master thesis, National Chung Hsing University Department of Life Science. Taiwan. In Chinese.
Floren, A., & Deeleman-Reinhold, C. (2005). Diversity of arboreal spiders in primary and disturbed tropical forests. Journal of Arachnology, 33(2), 323–333.
Finch, O. D. (2005). Evaluation of mature conifer plantations as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). Forest Ecology and Management, 204(1), 23–36.
Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.
Gill, H. K., & Garg, H. (2014). Pesticides: environmental impacts and management strategies. In: Larramendy, M. L., Soloneski, S. (eds) Pesticides-toxic aspects, 187–210, IntechOpen, Rijeka.
Girard, J., Baril, A., Mineau, P., & Fahrig, L. (2011). Carbon and nitrogen stable isotope ratios differ among invertebrates from field crops, forage crops, and non-cropped land uses. Ecoscience, 18(2), 98–109.
Greenstone, M. H. (1984). Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia, 62(3), 299–304.
Harrison, S., Davies, K. F., Safford, H. D., & Viers, J. H. (2006). Beta diversity and the scale‐dependence of the productivity‐diversity relationship: a test in the Californian serpentine flora. Journal of Ecology, 94(1), 110–117.
Hobi, M. L., Dubinin, M., Graham, C. H., Coops, N. C., Clayton, M. K., Pidgeon, A. M., & Radeloff, V. C. (2017). A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sensing of Environment, 195, 142–152.
Huang, P. S., Tsai, S. M., Lin, H. C., & Tso, I. M. (2015). Do Biotope Area Factor values reflect ecological effectiveness of urban landscapes? A case study on university campuses in central Taiwan. Landscape and Urban Planning, 143, 143–149.
Jiménez-Valverde, A., & Lobo, J. M. (2006). Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae). Environmental Entomology, 35(6), 1491–1499.
Johnson, R. K., & Angeler, D. G. (2014). Effects of agricultural land use on stream assemblages: Taxon-specific responses of alpha and beta diversity. Ecological Indicators, 45, 386–393.
Khlifa, R., Paquette, A., Messier, C., Reich, P. B., & Munson, A. D. (2017). Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecology and Evolution, 7(19), 7965–7974.
Kumar, P., & Ghose, M. K. (2017). Remote sensing-derived spectral vegetation indices and forest carbon: testing the validity of models in mountainous terrain covered with high biodiversity. Current Science, 112(10), 2043.
Lafage, D., Secondi, J., Georges, A., Bouzillé, J. B., & Pétillon, J. (2014). Satellite‐derived vegetation indices as surrogate of species richness and abundance of ground beetles in temperate floodplains. Insect Conservation and Diversity, 7(4), 327–333.
Lasseur, R., Vannier, C., Lefebvre, J., Longaretti, P. Y., & Lavorel, S. (2018). Landscape-scale modeling of agricultural land use for the quantification of ecosystem services. Journal of Applied Remote Sensing, 12(4), 046024.
Li J., Gao G., Zhang X., Zheng X., (2005). Effects of urbanization on biodiversity: A review. Chinese Journal of Ecology, 24 (8), 953–957. In Chinese.
Liu, G. R., Liang, C. K., Kuo, T. H., & Lin, T. H. (2004). Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data. Terrestrial, Atmospheric and Oceanic Sciences, 15(1), 15–31.
Lu, L., Kuenzer, C., Wang, C., Guo, H., & Li, Q. (2015). Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sensing, 7(6), 7597–7614.
Lo-Man-Hung, N. F., Gardner, T. A., Ribeiro-Júnior, M. A., Barlow, J., & Bonaldo, A. B. (2008). The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. Journal of Arachnology, 36(2), 394–401.
Lowe, E. C., Threlfall, C. G., Wilder, S. M., & Hochuli, D. F. (2018). Environmental drivers of spider community composition at multiple scales along an urban gradient. Biodiversity and Conservation, 27(4), 829–852.
Magura, T., Horváth, R., & Tóthmérész, B. (2010). Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape Ecology, 25(4), 621–629.
Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment, 74(1), 229–273.
Maurya, P. K., & Malik, D. S. (2016). Bioaccumulation of xenobiotics compound of pesticides in riverine system and its control technique: a critical review. Journal of Industrial Pollution Control, 32(2), 580–590.
Marzluff J.M. (2001) Worldwide urbanization and its effects on birds. In: Marzluff J.M., Bowman R., Donnelly R. (eds) Avian Ecology and Conservation in an Urbanizing World, 19–47, Springer, Boston.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.
McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T., & Sandin, L. (2013). Does lake habitat alteration and land‐use pressure homogenize European littoral macroinvertebrate communities? Journal of Applied Ecology, 50(4), 1010–1018.
McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems, 11(2), 161–176.
Michaud, J. S., Coops, N. C., Andrew, M. E., Wulder, M. A., Brown, G. S., & Rickbeil, G. J. (2014). Estimating moose (Alces alces) occurrence and abundance from remotely derived environmental indicators. Remote Sensing of Environment, 152, 190–201.
Miyashita, T., Shinkai, A., & Chida, T. (1998). The effects of forest fragmentation on web spider communities in urban areas. Biological Conservation, 86(3), 357–364.
Mohapatra, S. N., Pani, P., & Sharma, M. (2014). Rapid urban expansion and its implications on geomorphology: A remote sensing and GIS based study. Geography Journal, 361459.
Nakadai, R., Hashimoto, K., Iwasaki, T., & Sato, Y. (2018). Geographical co-occurrence of butterfly species: the importance of niche filtering by host plant species. Oecologia, 186(4), 995–1005.
Nyffeler, M., & Benz, G. (1987). Spiders in natural pest control: a review. Journal of Applied Entomology, 103(1–5), 321–339.
Pearson, D. L. (1994). Selecting indicator taxa for the quantitative assessment of biodiversity. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 345(1311), 75–79.
Petcharad, B., Miyashita, T., Gale, G. A., Sotthibandhu, S., & Bumrungsri, S. (2016). Spatial patterns and environmental determinants of community composition of web-building spiders in understory across edges between rubber plantations and forests. Journal of Arachnology, 44(2), 182–193.
Phillips, L. B., Hansen, A. J., Flather, C. H., & Robison-Cox, J. (2010). Applying species-energy theory to conservation: a case study for North American birds. Ecological Applications, 20(7), 2007–2023.
Pinto-Leite, C. M., Guerrero, A. C., & Brazil, T. K. (2008). Non-random patterns of spider species composition in an Atlantic rainforest. Journal of Arachnology, 36(2), 448–452.
Robert, A. S. (2007). Remote sensing: Models and methods for image processing. Elsevier Inc., USA.
Samu, F., & Vollrath, F. (1992). Spider orb web as bioassay for pesticide side effects. Entomologia Experimentalis et Applicata, 62(2), 117–124.
Scharf, I., Lubin, Y., & Ovadia, O. (2011). Foraging decisions and behavioral flexibility in trap‐building predators: a review. Biological Reviews, 86(3), 626–639.
Schirmel, J., Lenze, S., Katzmann, D., & Buchholz, S. (2010). Capture efficiency of pitfall traps is highly affected by sampling interval. Entomologia Experimentalis et Applicata, 136(2), 206-210.
Setiawan, N. N., Vanhellemont, M., Baeten, L., Gobin, R., De Smedt, P., Proesmans, W. & Verheyen, K. (2016). Does neighbourhood tree diversity affect the crown arthropod community in saplings? Biodiversity and Conservation, 25(1), 169–185.
Shih, W. Y. (2018). Bird diversity of greenspaces in the densely developed city centre of Taipei. Urban Ecosystems, 21(2), 379–393.
Simon, E. (1890a). Etudes arachnologiques. 22e Mémoire. XXXIV. Etude sur les arachnides de l'Yemen. Annales de la Société Entomologique de France, 6(10), 77–124.
Štokmane, M., & Spuņģis, V. (2014). Diversity of grass-dwelling spiders (Arachnida: Araneae) in calcareous fens of the Coastal Lowland, Latvia. Journal of Insect Conservation, 18(5), 757–769.
Suttidate, N. (2016). Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics. Unpublished doctoral dissertation, The University of Wisconsin-Madison. USA.
Tiede, Y., Hemp, C., Schmidt, A., Nauss, T., Farwig, N., & Brandl, R. (2018). Beyond body size: consistent decrease of traits within orthopteran assemblages with elevation. Ecology, 99(9), 2090–2102.
Turrini, T., & Knop, E. (2015). A landscape ecology approach identifies important drivers of urban biodiversity. Global Change Biology, 21(4), 1652–1667.
Tso, I. M., Tseng, L., Chuang, J. C., (2005) Diversity and community structure of spiders in Yang-Ming Shan National Park. National Park Journal, 15(1), 1–20. In Chinese.
United Nation. (2018). World Urbanization Prospects: The 2018 Revision-key facts, 2pp
Uetz, G. W., Halaj, J., & Cady, A. B. (1999). Guild structure of spiders in major crops. Journal of Arachnology, 27, 270–280.
Varet, M., Burel, F., & Pétillon, J. (2014). Can urban consolidation limit local biodiversity erosion? Responses from carabid beetle and spider assemblages in Western France. Urban Ecosystems, 17(1), 123–137.
Vilar, A., Dam, H., Loon, E. E., Vonk, J. A., Der Geest, H. G., & Admiraal, W. (2014). Eutrophication decreases distance decay of similarity in diatom communities. Freshwater Biology, 59(7), 1522–1531.
Yan, Z., Teng, M., He, W., Liu, A., Li, Y., & Wang, P. (2019). Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Science of the Total Environment, 650, 335–342.
Yekwayo, I., Pryke, J. S., Roets, F., & Samways, M. J. (2016). Conserving a variety of ancient forest patches maintains historic arthropod diversity. Biodiversity and Conservation, 25(5), 887–903.
Yin, C. M., Peng, X. J., Yan, H. M., Bao, Y. H., Xu, X., Tang, G., Zhou, Q. S. & Liu, P. (2012). Fauna Hunan: Araneae in Hunan, China. Hunan Science and Technology Press Changsha, China. In Chinese.
Yu, X., Zheng, X., Xu, H., Lu, Z., Chen, J., & Tao, L. (2002). A study on the dispersal of lycosid spider, Pirata subpiraticus between rice and Zizania fields. Kun chong xue bao. Acta Entomologica Sinica, 45(5), 636–640. In Chinese.
Zhang, Y., Liu, Y., Zhang, Y., Liu, Y., Zhang, G., & Chen, Y. (2018). On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Science of The Total Environment, 637, 780–790.
Zorzal-Almeida, S., Bini, L. M., & Bicudo, D. C. (2017). Beta diversity of diatoms is driven by environmental heterogeneity, spatial extent and productivity. Hydrobiologia, 800(1), 7–16.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/700-
dc.description.abstract遙測技術可以監測大空間尺度下的環境變化,使探討都市化對生物多樣性的衝擊研究更容易進行,其中,又以能夠反映棲地枝葉量多寡與初級生產力的植被指數最常被使用於描述棲地的面積以及棲地的品質;然而,有關棲地初級生產力假說和遙測資料衍生的環境因子如何影響蜘蛛這類肉食性小型節肢動物在大空間尺度下分布的研究卻較為缺乏且結果分歧。因此,本研究使用遙測資料所衍生的棲地動態指數與建蔽/裸地動態指數,探討與蜘蛛物種多樣性、科組成以及棲地偏好間的關係,並找出遙測因子能解釋最多變異的取樣尺度。本研究透過1145組掉落式陷阱蒐集蜘蛛樣本,並將蜘蛛物種多樣性依照1、6.25、25、100公頃的網格進行資料整合;另一方面,遙測資料則由大地8號衛星的網路公開資料庫取得,並使用廣義線性混合模式以及冗餘分析測試遙測因子和蜘蛛物種多樣性資料之間的關係。本研究發現,蜘蛛物種多樣性和棲地初級生產力呈顯著的正相關,且由於上行效應,使得蜘蛛儘管是食物鏈中上層的掠食者而非直接取食植物的初級消費者,棲地生產力假說仍能適用於牠們;且遙測因子,特別是年累積生產力,能夠顯著地解釋蜘蛛的物種多樣性以及科組成,而解釋變異的比例在6.25到25公頃的空間尺度之間達到最大。此外,狼蛛、皿蛛、姬蛛以及卵蛛這四個優勢科基於其體型、覓食策略和型態特徵的不同,棲地偏好能良好地被遙測因子所解釋。本研究提供了使用大尺度監測工具研究小型肉食節肢動物的方法,在保育策略方面,於都會綠地中營造初級生產力高且穩定的環境有助於蜘蛛多樣性的保育,除大面積綠地之外,高度都市化地區的行道樹或小型花壇亦是都會蜘蛛的重要棲地,減少殺蟲劑和除草劑的用量對於都會蜘蛛的物種多樣性保育亦有助益。zh_TW
dc.description.abstractThrough remote sensing data, monitoring the impact of urbanization on species diversity at a regional scale has become more and more convenient. Vegetation indices have been used to represent the size of habitats and habitat quality by predicting the amount of foliage and habitat productivity. However, studies on how habitat primary productivity hypothesis and remote sensing derived environmental factors (RS factors) affect spatial distribution of spiders at large spatial scales are lacking, and the relationship between spider diversity and RS factors remains unclear. Hence, the present study aimed to examine the relationship of spider species richness, family composition, and habitat preference with RS factors (Dynamic Habitat Indices and Dynamic Building/Bareness Indices) and determine the best spatial scale of sampling unit which RS factors could explain the largest variance in spider species richness and family composition. Spider species distribution data were obtained by pitfall traps in 1,145 sampling sites in an urbanization landscape in central Taiwan. Remote sensing data were obtained from Landsat 8 images. The relationships between RS factors and spider assemblage diversity were examined by generalized linear mixed models and redundancy analysis at four spatial scales: 1, 6.25, 25, and 100 ha grids. Results reveal that although spiders are predators which occupy higher trophic level, spider diversity follows habitat productivity hypothesis based on bottom-up effect, and thus could be modeled by RS factors significantly, especially cumulative Dynamic Habitat Index. The best spatial scale for studying spider diversity by RS factors was between 6.25 to 25 ha. With differences in sizes, foraging strategy, and morphological traits, habitat preferences of dominant spider families, Lycosidae, Linyphiidae, Theridiidae, and Oonopidae, could also be well explained by RS factors. Overall, the present study offers methods of modeling the spatial distribution of small carnivorous invertebrate species richness in the urbanization landscape by remote sensing data at a broad scale. For spider biodiversity conservation, maintaining high and stable habitat productivity in green areas, such as parks or school campuses, can help maintain high spider species richness. Also, Reducing the use of pesticides and herbicide at street trees and small vegetated patches in highly urbanized areas may also help on conserving spider diversity.en
dc.description.provenanceMade available in DSpace on 2021-05-11T04:59:48Z (GMT). No. of bitstreams: 1
ntu-108-R06625007-1.pdf: 3840439 bytes, checksum: a559d107705ff94a0c06b16832dbe422 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES x
Introduction 1
Methods 12
Results 24
Discussion 35
References 42
Appendix 54
dc.language.isoen
dc.title使用遙測資料探討都會地景蜘蛛多樣性之空間分布zh_TW
dc.titleSpatial Patterns of Spider Diversity in Urban
Landscape by Using Remote Sensing Derived Indices
en
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor卓逸民(I-Min Tso)
dc.contributor.oralexamcommittee李培芬,張琪如
dc.subject.keyword棲地生產力,增強植被指數,棲地動態指數,增強建蔽/裸地指數,臺灣,zh_TW
dc.subject.keywordHabitat productivity,EVI,Dynamic Habitat Indices,EBBI,Taiwan,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201902479
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved