Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorChieh-Yu Wenen
dc.contributor.author溫婕妤zh_TW
dc.date.accessioned2021-06-17T03:43:10Z-
dc.date.available2028-02-04
dc.date.copyright2018-02-23
dc.date.issued2017
dc.date.submitted2018-02-05
dc.identifier.citationPang, J. H., Liu, X., Wu, M., Wu, Y. Y., Zhang, X. M., & Sun, R. C. (2014). Fabrication and characterization of regenerated cellulose films using different ionic liquids. Journal of Spectroscopy, 2014.
Blagoev, M., Bizzari, S., & Inoguchi, Y. (2011). Rayon and lyocell fibers. IHS Chemical.
Sun, L., Chen, J. Y., Jiang, W., & Lynch, V. (2015). Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohydrate polymers, 118, 150-155.
Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate polymers, 86(2), 462-468.
Fink, H. P., Weigel, P., Purz, H. J., & Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science, 26(9), 1473-1524.
Hall, M. E., Horrocks, A. R., & Seddon, H. (1999). The flammability of Lyocell. Polymer degradation and Stability, 64(3), 505-510.
Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.
Strunk, P., Lindgren, Å., Agnemo, B. E. R., & Eliasson, B. (2012). Chemical changes of cellulose pulps in the processing to viscose dope. Cellulose Chemistry and Technology, 46(9-10), 559-569.
Cao, Y., & Tan, H. (2005). Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme and Microbial Technology, 36(2), 314-317.
Stokke, D. D., Wu, Q., & Han, G. (2013). Introduction to wood and natural fiber composites. John Wiley & Sons.
Wilkes, A. G. (2001). The viscose process. Regenerated cellulose fibers, 37-61.
Borbély, É. (2008). Lyocell, the new generation of regenerated cellulose. Acta Polytechnica Hungarica, 5(3), 11-18.
Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974-4975.
Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y., & He, J. (2009). Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chemical Engineering Journal, 147(1), 13-21.
Clare, B., Sirwardana, A., & MacFarlane, D. R. (2010). Synthesis, purification and characterization of ionic liquids. Topics in Current Chemistry, 290, 1-40.
Wahlström, R. (2014). Enzymatic hydrolysis of cellulose in aqueous ionic liquids. VTT Technical Research Centre of Finland.
Swatloski, R. P., Holbrey, J. D., & Rogers, R. D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 5(4), 361-363.
Aggarwal, V. K., Emme, I., & Mereu, A. (2002). Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis–Hillman reaction. Chemical Communications, (15), 1612-1613.
van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in ionic liquids. Chemical reviews, 107(6), 2757-2785.
Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1), 123-150.
Rosenau, T., Potthast, A., Sixta, H., & Kosma, P. (2001). The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Progress in polymer science, 26(9), 1763-1837.
Kim, D. B., Jo, S. M., Lee, W. S., & Pak, J. J. (2004). Physical agglomeration behavior in preparation of cellulose‐N‐methyl morpholine N‐oxide hydrate solutions by simple mixing. Journal of applied polymer science, 93(4), 1687-1697.
Kim, S. O., Shin, W. J., Cho, H., Kim, B. C., & Chung, I. J. (1999). Rheological investigation on the anisotropic phase of cellulose–MMNO/H 2O solution system. Polymer, 40(23), 6443-6450.
Chanzy, H., Nawrot, S., Peguy, A., Smith, P., & Chevalier, J. (1982). Phase behavior of the quasiternary system N‐methylmorpholine‐N‐oxide, water, and cellulose. Journal of Polymer Science Part B: Polymer Physics, 20(10), 1909-1924.
Cook, M. J., Katritzky, A. R., & Manas, M. M. (1971). The conformational analysis of saturated heterocycles. Part XXXVIII. N-alkylpiperidine and N-alkylmorpholine N-oxides. Journal of the Chemical Society B: Physical Organic, 1330-1334.
Marhöfer, R. J., Kast, K. M., Schilling, B., Bär, H. J., Kast, S. M., & Brickmann, J. (2000). Molecular dynamics simulations of tertiary systems of cellohexaose/aliphatic N‐oxide/water. Macromolecular Chemistry and Physics, 201(15), 2003-2007.
Wu, C.L., X.P. Li, S.L. Qin and J.Y. Wang (2005) Study of new organic cellulose solvent: N‐methylmorpholine N‐oxide (NMMO). Journal of Lanzhou University of Technology. 31(2): 73-76.
Wu, C.L., X.P. Li and S.L. Qin (2004). Cellulose solvent: Current research status and its application prospect. Transactions of China Pulp and Paper, 19(2): 171-175.
Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., & Holladay, J. E. (2007). Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydrate Polymers, 67(1), 97-103.
Kim, D. B., Jo, S. M., Lee, W. S., & Pak, J. J. (2004). Physical agglomeration behavior in preparation of cellulose‐N‐methyl morpholine N‐oxide hydrate solutions by simple mixing. Journal of applied polymer science, 93(4), 1687-1697.
Kast, K. M., Reiling, S., & Brickmann, J. (1998). Ab initio investigations of hydrogen bonding in aliphatic N-oxide–water systems. Journal of molecular structure: Theochem, 453(1), 169-180.
Laity, P. R., Glover, P. M., & Hay, J. N. (2002). Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer, 43(22), 5827-5837.
Michels, C., & Kosan, B. (2005). Contribution to the dissolution state of cellulose and cellulose derivatives. Lenzinger Berichte, 84, 62-70.
Biganska, O., & Navard, P. (2009). Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose, 16(2).
Gunnars, S., Wågberg, L., & Cohen Stuart, M. A. (2002). Model films of cellulose: I. Method development and initial results. Cellulose, 9(3), 239-249.
Yeh, P., & Gu, C. (2010). Optics of liquid crystal displays (Vol. 67). John Wiley & Sons.
Binnemans, K. (2005). Ionic liquid crystals. Chemical Reviews, 105(11), 4148-4204.
Finkenzeller U. (1990) Liquid crystals. Nature’s delicate phase of matter. Advanced Materials, 3(10): 518–519.
Wang W. Z., Hsu Y. Y., Lin H. M., Huang G. D. (2010) Application of Biomaterials in Polarizing Plate Technology. Industrial Materials, 280: 69-75.
Ohyama, T., Ukai, Y., Fennell, L., Kato, Y., Bae, H. G., & Sung, P. W. (2004) 34.2: TN Mode TFT‐LCD with In‐cell Polarizer. SID Symposium Digest of Technical Papers, 35(1), 1106-1109.
Ma, J., Ye, X., & Jin, B. (2011). Structure and application of polarizer film for thin-film-transistor liquid crystal displays. Displays, 32(2), 49-57.
Moussa, F., Benattar, J. J., & Williams, C. (1983). Positional order and bond orientational order in the liquid crystal smectic F phase. Molecular Crystals and Liquid Crystals, 99(1), 145-154.
Moreno-Razo, J. A., Sambriski, E. J., Abbott, N. L., Hernandez-Ortiz, J. P., & De Pablo, J. J. (2012). Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature, 485(7396), 86-89.
Whitmer, J. K., Wang, X., Mondiot, F., Miller, D. S., Abbott, N. L., & de Pablo, J. J. (2013). Nematic-field-driven positioning of particles in liquid crystal droplets. Physical review letters, 111(22), 227801.
Said, S. M., Zulkifli, A. Z. S., Kamarudin, M. A., Mainal, A., Subramanian, B., & Mohamed, N. S. (2015). Polymer electrolyte liquid crystal system for improved optical and electrical properties. European Polymer Journal, 66, 266-272.
Sato, O., Kubo, S., & Gu, Z. Z. (2008). Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts of chemical research, 42(1), 1-10.
Muševič, I., Škarabot, M., Tkalec, U., Ravnik, M., & Žumer, S. (2006). Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science, 313(5789), 954-958.
Gray, G. W., Harrison, K. J., & Nash, J. A. (1973). New family of nematic liquid crystals for displays. Electronics Letters, 9(6), 130-131.
Han, G. R., & Jang, C. H. (2012). Measuring ligand–receptor binding events on polymeric surfaces with periodic wave patterns using liquid crystals. Colloids and Surfaces B: Biointerfaces, 94, 89-94.
Soroceanu, M., Barzic, A. I., Stoica, I., Sacarescu, L., & Harabagiu, V. (2015). The influence of polysilane chemical structure on optical properties, rubbed film morphology and LC alignment. Express Polymer Letters, 9(5), 456-468.
Mancini, G., Papirio, S., Lens, P. N., & Esposito, G. (2016). Solvent pretreatments of lignocellulosic materials to enhance biogas production: A review. Energy & Fuels, 30(3), 1892-1903.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70094-
dc.description.abstract現今因全球石油危機尚未解除,所以開發可再生能源的重要性逐日攀升。而 纖維素是自然界中分布最廣且含量最多的一種多醣類,也是组成植物细胞壁的主 要成分之一,所以近年來有許多科學家致力於纖維素資源的研究。而在日常生活 中,纖維素常利用於,造紙業、家具業、生質能源、紡織工業等,但因為纖維素 很難熔融,也不能溶於水中,所以在傳統的製程中,工業端必須耗費大量的化學 藥劑以溶解纖維素,而這些化學藥劑通常具有毒性,會對環境造成危害。因此本 研究使用對環境相對較友善,且具有高回收特性的N-甲基嗎晽-N的氧化物水溶液 (NMMO)作為溶劑,以此溶解各式不同的纖維原料,並製作再生纖維素薄膜。
本研究最主要目的為觀測不同基材及不同實驗條件,是否會對再生纖維素薄 膜之纖維方向性造成影響,並使纖維素朝同一方向排列且具有特定的方向性,之 後再進一步對製成之纖維素薄膜做檢測。製成後的再生纖維素薄膜擁有許多用途, 例如:食品包裝、醫療敷料、偏光片等。
本實驗結果顯示,再生纖維素薄膜表面的纖維方向性,會受到不同的旋轉塗 布條件、加熱條件、基板種類以及原料種類所影響。其中又以由矽晶片作為基板, 3000轉速處理及100oC加熱24小時之樣品成果最好,其纖維溶解度、纖維排列方 向性及薄膜表面平滑程度皆最佳。
zh_TW
dc.description.abstractTo obtain the eco-friendly and well-aligned cellulose films, different substrates and process conditions were conducted. N-methylmorpholine-N-oxide (NMMO) was used as solvent to dissolve cellulose materials and three kinds of substrates: silicon wafer, quartz plate and glass plate were used as substrate to produce a regenerated cellulose films.
The effect of different substrate-induced strain on cellulose alignment, film morphology, and optical characteristics of regenerated cellulose films was observed. Moreover, the performance of regenerated cellulose films could be improved through the spinning and heating conditions.
Four parameters: spinning, heating, substrates and pulps were conducted in this thesis. In order to figure out how these impact factors affected the cellulose alignment, POM, OSP and SEM were used to determine cellulose alignment and morphology of the regenerated cellulose film.
The results indicated that these four factors were both affected the cellulose alignment. We could obtain the most well aligned regenerated cellulose film by 3000 rpm spinning process, 100oC heating for 24hr. and induced it by silicon wafer.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:43:10Z (GMT). No. of bitstreams: 1
ntu-106-R04625040-1.pdf: 5661294 bytes, checksum: 891e05da8c574688145182a6a715b55f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要……………………………………………………………………………... I
Abstract………………………………………………………………………... II
Contents………………………………………………………………………... III
Figure index……………………………………………………………………. V
Table index…………………………………………………………………….. VIII
List of Abbreviations………………………………………………………….. IX
Chapter 1 Introduction……………………………………………………….. 1
Chapter 2 Literature review…………………………………………………. 4
2.1. Cellulose………………………………………………………………... 4
2.1.1. Structure and properties………………………………………… 4
2.1.2. Supramolecular structure………………………………………… 5
2.1.3. Degree of crystallinity…………………………………………… 6
2.2. Ionic liquids overview…………………………………………………. 7
2.2.1. History and Development…………………………………………..7
2.2.2. Characteristics……………………………………………………... 9
2.2.3. Application………………………………………………………….. 11
2.2.4. N-methylmorpholine-N-oxide (NMMO) ……………… 12
2.3. Cellulose dissolution in NMMO………………………………… 14
2.3.1. Mechanism of cellulose dissolution in NMMO……………… 14
2.3.2. Restrict of using NMMO………………………………………… 15
2.3.3. Influential factor of cellulose dissolution…………………………. 16
2.3.4. Side reaction of cellulose dissolution……………………………... 18
2.4. Regenerated cellulose-NMMO films…………………………………… 19
2.4.1. Properties of regenerated cellulose films………………………….. 19
2.4.2. Techniques for manufacturing regenerated cellulose films……….. 21
2.5. Cellulose films apply to liquid crystals displays…………………… 22
2.5.1. Introduction of liquid crystal displays…………………………….. 22
2.5.2. Characteristics of the liquid crystal………………………………... 23
2.5.3. Polarizer…………………………………………………………….. 24
Chapter 3 Materials and Methodologies…………………………………….. 26
3.1. Research framework……………………………………………………. 26
3.2. Material…………………………………………………………………. 26
3.2.1. Pulps……………………………………………………………….... 26
3.2.2. Substrates…………………………………………………………... 28
3.2.3. Solvents……………………………………………………………... 29
3.2.4. Liquid crystals……………………………………………………... 29
3.3. Methodologies………………………………………………………….. 30
3.3.1. Preparation of regenerated cellulose films………………………… 30
3.3.2. Chemical composition……………………………………………... 31
3.3.3. Fiber Morphology…………………………………………………... 31
3.3.4. Degree of polymerization (DP) …………………………………… 32
3.3.5. X-ray diffraction (XRD) analysis…………………………………. 33
3.3.6. Polarizing optical microscope (POM) ……………………………. 34
3.3.7. Scanning electron microscope (SEM) ……………………………. 34
3.3.8. Non-contacting optical surface profile (OSP) …………………….. 35
3.3.9. Surface roughness………………………………………………….. 35
Chapter 4 Results and discussion…………………………………………….. 36
4.1. Chemical properties of pulps…………………………………………… 36
4.2. Effect of particle size on DP value……………………………………... 37
4.2.1. Particle size of pulps………………………………………………. 37
4.2.2. DP value of raw and regenerated pulps…………………………… 37
4.3. Crystallinity of pulps…………………………………………………… 39
4.4. Alignment ability of regenerated cellulose films…………………….. 41
4.4.1. Spinning conditions……………………………………………….. 41
4.4.2. Heating conditions……………………………………………….… 44
4.4.3. Substrate conditions……………………………………………….. 50
4.4.4. Pulp conditions…………………………………………………….. 55
4.5. Surface profile of regenerated cellulose films………………………… 59
4.5.1. Heating conditions……………………………………………….… 59
4.5.2. Substrate conditions……………………………………………….. 62
4.5.3. Pulp conditions…………………………………………………….. 64
Chapter 5 Conclusions………………………………………………………... 68
Chapter 6 References…………………………………………………………. 70
dc.language.isoen
dc.subject矽晶片zh_TW
dc.subjectN-甲基嗎?-N-氧化物(NMMO)zh_TW
dc.subject纖維方向性zh_TW
dc.subject再生纖維素薄膜zh_TW
dc.subjectN-methylmorpholine-N-oxide (NMMO)en
dc.subjectRegenerated cellulose filmen
dc.subjectCellulose alignmenten
dc.subjectSilicon waferen
dc.title基材對再生纖維素薄膜之纖維排列性、表面形態之影響zh_TW
dc.titleEffect of Substrate-induced Strain on the Alignment, Morphology, and Characteristics of Regenerated Cellulose Filmsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee葉炳宏,徐秀福
dc.subject.keywordN-甲基嗎?-N-氧化物(NMMO),再生纖維素薄膜,纖維方向性,矽晶片,zh_TW
dc.subject.keywordN-methylmorpholine-N-oxide (NMMO),Regenerated cellulose film,Cellulose alignment,Silicon wafer,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201703968
dc.rights.note有償授權
dc.date.accepted2018-02-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved