請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張震東 | |
| dc.contributor.author | Jia-Feng Mao | en |
| dc.contributor.author | 毛嘉鳳 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:42:54Z | - |
| dc.date.available | 2023-03-02 | |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-05 | |
| dc.identifier.citation | 1. Siegel, R. L., Miller, K. D., and Jemal, A. (2017) Cancer Statistics, 2017. Ca-Cancer J Clin 67, 7-30
2. Subramanian, J., and Govindan, R. (2007) Lung cancer in never smokers: a review. J Clin Oncol 25, 561-570 3. Kris, M. G., Johnson, B. E., Berry, L. D., Kwiatkowski, D. J., Iafrate, A. J., Wistuba, II, Varella-Garcia, M., Franklin, W. A., Aronson, S. L., Su, P. F., Shyr, Y., Camidge, D. R., Sequist, L. V., Glisson, B. S., Khuri, F. R., Garon, E. B., Pao, W., Rudin, C., Schiller, J., Haura, E. B., Socinski, M., Shirai, K., Chen, H., Giaccone, G., Ladanyi, M., Kugler, K., Minna, J. D., and Bunn, P. A. (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998-2006 4. Vijayalakshmi, R., and Krishnamurthy, A. (2011) Targetable 'driver' mutations in non small cell lung cancer. Indian J Surg Oncol 2, 178-188 5. Pao, W., and Girard, N. (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12, 175-180 6. Modjtahedi, H., and Dean, C. (1994) The receptor for EGF and its ligands - expression, prognostic value and target for therapy in cancer (review). Int J Oncol 4, 277-296 7. Holbro, T., and Hynes, N. E. (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44, 195-217 8. Ioannou, N., Seddon, A. M., Dalgleish, A., Mackintosh, D., and Modjtahedi, H. (2012) Expression pattern and targeting of HER family members and IGF-IR in pancreatic cancer. Front Biosci (Landmark Ed) 17, 2698-2724 9. Zhang, X., Gureasko, J., Shen, K., Cole, P. A., and Kuriyan, J. (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137-1149 10. Kumar, A., Petri, E. T., Halmos, B., and Boggon, T. J. (2008) Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol 26, 1742-1751 11. Ciardiello, F., and Tortora, G. (2008) EGFR antagonists in cancer treatment. N Engl J Med 358, 1160-1174 12. Khelwatty, S. A., Essapen, S., Seddon, A. M., and Modjtahedi, H. (2013) Prognostic significance and targeting of HER family in colorectal cancer. Front Biosci (Landmark Ed) 18, 394-421 13. Gazdar, A. F. (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1, S24-31 14. Horn, L., and Sandler, A. (2009) Epidermal growth factor receptor inhibitors and antiangiogenic agents for the treatment of non-small cell lung cancer. Clin Cancer Res 15, 5040-5048 15. Wong, A. L., and Lee, S. C. (2012) Mechanisms of Resistance to Trastuzumab and Novel Therapeutic Strategies in HER2-Positive Breast Cancer. Int J Breast Cancer 2012, 415170 16. Mitsudomi, T., and Yatabe, Y. (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98, 1817-1824 17. Hirsh, V. (2011) Afatinib (BIBW 2992) development in non-small-cell lung cancer. Future Oncol 7, 817-825 18. Engelman, J. A., Zejnullahu, K., Gale, C. M., Lifshits, E., Gonzales, A. J., Shimamura, T., Zhao, F., Vincent, P. W., Naumov, G. N., Bradner, J. E., Althaus, I. W., Gandhi, L., Shapiro, G. I., Nelson, J. M., Heymach, J. V., Meyerson, M., Wong, K. K., and Janne, P. A. (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67, 11924-11932 19. Minkovsky, N., and Berezov, A. (2008) BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr Opin Investig Drugs 9, 1336-1346 20. Lin, N. U., Winer, E. P., Wheatley, D., Carey, L. A., Houston, S., Mendelson, D., Munster, P., Frakes, L., Kelly, S., Garcia, A. A., Cleator, S., Uttenreuther-Fischer, M., Jones, H., Wind, S., Vinisko, R., and Hickish, T. (2012) A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat 133, 1057-1065 21. Pucheault, M. (2008) Natural products: chemical instruments to apprehend biological symphony. Org Biomol Chem 6, 424-432 22. Ziegler, S., Pries, V., Hedberg, C., and Waldmann, H. (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 52, 2744-2792 23. Swinney, D. C., and Anthony, J. (2011) How were new medicines discovered? Nat Rev Drug Discov 10, 507-519 24. Sato, S., Murata, A., Shirakawa, T., and Uesugi, M. (2010) Biochemical target isolation for novices: affinity-based strategies. Chem Biol 17, 616-623 25. Krysiak, J., and Breinbauer, R. (2012) Activity-based protein profiling for natural product target discovery. Top Curr Chem 324, 43-84 26. Verhelst, S. H., Fonovic, M., and Bogyo, M. (2007) A mild chemically cleavable linker system for functional proteomic applications. Angew Chem Int Ed Engl 46, 1284-1286 27. Abuelyaman, A. S., Hudig, D., Woodard, S. L., and Powers, J. C. (1994) Fluorescent derivatives of diphenyl [1-(N-peptidylamino)alkyl]phosphonate esters: synthesis and use in the inhibition and cellular localization of serine proteases. Bioconjug Chem 5, 400-405 28. Kam, C. M., Abuelyaman, A. S., Li, Z., Hudig, D., and Powers, J. C. (1993) Biotinylated isocoumarins, new inhibitors and reagents for detection, localization, and isolation of serine proteases. Bioconjug Chem 4, 560-567 29. Green, N. M. (1963) Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and for Assay. Biochem J 89, 585-591 30. Marttila, A. T., Laitinen, O. H., Airenne, K. J., Kulik, T., Bayer, E. A., Wilchek, M., and Kulomaa, M. S. (2000) Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett 467, 31-36 31. Kolb, H. C., Finn, M. G., and Sharpless, K. B. (2001) Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl 40, 2004-2021 32. Lomenick, B., Jung, G., Wohlschlegel, J. A., and Huang, J. (2011) Target identification using drug affinity responsive target stability (DARTS). Curr Protoc Chem Biol 3, 163-180 33. Lomenick, B., Olsen, R. W., and Huang, J. (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6, 34-46 34. Carmi, C., Mor, M., Petronini, P. G., and Alfieri, R. R. (2012) Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol 84, 1388-1399 35. Johnson, D. S., Weerapana, E., and Cravatt, B. F. (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2, 949-964 36. Bauer, R. A. (2015) Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today 20, 1061-1073 37. Usman, M. W., Luo, F., Cheng, H., Zhao, J. J., and Liu, P. (2015) Chemopreventive effects of aspirin at a glance. Biochim Biophys Acta 1855, 254-263 38. Singh, J., Petter, R. C., Baillie, T. A., and Whitty, A. (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10, 307-317 39. Serafimova, I. M., Pufall, M. A., Krishnan, S., Duda, K., Cohen, M. S., Maglathlin, R. L., McFarland, J. M., Miller, R. M., Frodin, M., and Taunton, J. (2012) Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol 8, 471-476 40. Taldone, T., Kang, Y., Patel, H. J., Patel, M. R., Patel, P. D., Rodina, A., Patel, Y., Gozman, A., Maharaj, R., Clement, C. C., Lu, A., Young, J. C., and Chiosis, G. (2014) Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J Med Chem 57, 1208-1224 41. Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Driscoll, D. R., Fidias, P., Lynch, T. J., Rabindran, S. K., McGinnis, J. P., Wissner, A., Sharma, S. V., Isselbacher, K. J., Settleman, J., and Haber, D. A. (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 102, 7665-7670 42. Mather, B. D., Viswanathan, K., Miller, K. M., and Long, T. E. (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31, 487-531 43. Li, N., Overkleeft, H. S., and Florea, B. I. (2012) Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol 16, 227-233 44. Wade Jr, L. G. Organic Chemistry 7th edition. 45. Reichard, P. (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57, 349-374 46. Ke, P. Y., Kuo, Y. Y., Hu, C. M., and Chang, Z. F. (2005) Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 19, 1920-1933 47. Hu, C. M., Yeh, M. T., Tsao, N., Chen, C. W., Gao, Q. Z., Chang, C. Y., Lee, M. H., Fang, J. M., Sheu, S. Y., Lin, C. J., Tseng, M. C., Chen, Y. J., and Chang, Z. F. (2012) Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 22, 36-50 48. Fidler, I. J. (2002) Critical determinants of metastasis. Semin Cancer Biol 12, 89-96 49. Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G., and Lambeth, D. O. (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32, 247-258 50. MacDonald, N. J., de la Rosa, A., and Steeg, P. S. (1995) The potential roles of nm23 in cancer metastasis and cellular differentiation. Eur J Cancer 31A, 1096-1100 51. Horak, C. E., Lee, J. H., Elkahloun, A. G., Boissan, M., Dumont, S., Maga, T. K., Arnaud-Dabernat, S., Palmieri, D., Stetler-Stevenson, W. G., Lacombe, M. L., Meltzer, P. S., and Steeg, P. S. (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67, 7238-7246 52. Lee, T. T., Worby, C., Bao, Z. Q., Dixon, J. E., and Colman, R. F. (1998) Implication of His68 in the substrate site of Bacillus subtilis adenylosuccinate lyase by mutagenesis and affinity labeling with 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-monophosphate. Biochemistry 37, 8481-8489 53. Lee, T. T., Worby, C., Dixon, J. E., and Colman, R. F. (1997) Identification of His141 in the active site of Bacillus subtilis adenylosuccinate lyase by affinity labeling with 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate. J Biol Chem 272, 458-465 54. Lee, T. T., Worby, C., Bao, Z. Q., Dixon, J. E., and Colman, R. F. (1999) His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis. Biochemistry 38, 22-32 55. Van den Berghe, G., Bontemps, F., and Vincent, M. F. (1991) Purine nucleotide cycle, molecular defects and therapy. Adv Exp Med Biol 309B, 281-286 56. Jurecka, A., Zikanova, M., Kmoch, S., and Tylki-Szymanska, A. (2015) Adenylosuccinate lyase deficiency. J Inherit Metab Dis 38, 231-242 57. Page, T., Bakay, B., and Nyhan, W. (1984) Human GMP Synthetase. Int J. Biochem 16, 117-120 58. Zalkin, H. (1993) The amidotransferases. Adv Enzymol Relat Areas Mol Biol 66, 203-309 59. Weber, G. (1983) Enzymes of purine metabolism in cancer. Clin Biochem 16, 57-63 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70089 | - |
| dc.description.abstract | Afatinib (BIBW 2992, Gilotrif™, Giotrif®) 為美國Boehringer Ingelheim公司所研發出來的非小細胞肺癌 (NSCLC) 標靶藥物,能以不可逆的方式共價鍵結在ErbB家族的EGFR、HER2與HER4的酪胺酸激酶上,阻斷酪胺酸激酶的磷酸化,抑制促進癌細胞生長的下游訊息傳遞。此外,Afatinib的優勢為能克服對前一代非小細胞肺癌藥物Erlotinib與Gefitinib產生的抗藥性突變 (T790M與L858R),藉此提昇對藥物產生抗性病人的存活時間。我們實驗室先前利用自行開發的藥物目標蛋白鑑定方法 (TISTA),發現了Afatinib不但能以EGFR作為目標蛋白,亦能以核糖核苷酸還原酶 (RNR) 作為藥物標靶,對於開拓藥物的使用範圍與合併療法提供了一些參考。在本研究中,我們由先前鑑定出可能為Afatinib的標靶蛋白中,選出與RNR具有類似功能,在核苷酸代謝中扮演重要角色的酵素,分別為DTYMK、ADSL、Nm23-H1/H2/H3、GMPS,探討其是否真的為 Afatinib的標靶蛋白。實驗結果發現DTYMK、ADSL、Nm23-H1/H2/H3、GMPS在高濃度的Afatinib 處理下,皆產生降解的現象,在低濃度時,則產生了蛋白質累積的現象,間接表示這四個蛋白皆為Afatinib的作用標靶。將處理的時間拉長到七十二小時,Afatinib在低濃度的劑量下就對四個蛋白質產生了影響。加入蛋白質降解抑制劑後,實驗結果顯示 DTYMK 與 Nm23-H1/H2/H3 是走溶酶體降解路徑,而ADSL、GMPS則現象不明顯。在低濃度時觀察到的蛋白質累積現象,實驗結果發現DTYMK、ADSL、GMPS皆是由於蛋白質生合成路徑而增加,而Nm23-H1/H2/H3則不明顯,由以上實驗結果顯示,Afatinib的確會對這四個蛋白質造成影響,很有潛力用來治療這四個蛋白質變異所造成的疾病。 | zh_TW |
| dc.description.abstract | Afatinib (BIBW 2992, Gilotrif™, Giotrif®) is a drug developed by Boehringer Ingelheim to treat non-small cell lung cancer as targeted therapy. Afatinib can act as an irreversible covalent inhibitor of the tyrosine kinases in the ErbB family (EGFR, HER2, HER4), which control cell signaling for cell survival, proliferation and metastasis. The advantage of afatinib is that it can overcome drug resistance mutation (T790M and L858R) induced by the noncovalent non-small lung cancer drugs (erlotinib and gefitinib) and extend the survival time of drug-resistant patients. Our laboratory previously has developed a drug target identification method (TISTA) and found that afatinib can not only target EGFR but also inhibit ribonucleotide reductase (RNR) as a direct target. This finding can serve as a foundation for further research on drug indications and combination therapy using afatinib. In this study, from a list of potential target proteins of afatinib, we selected four enzymes that have similar functions to RNR in nucleotide metabolism. These potential target proteins are DTYMK, ADSL, Nm23-H1/H2/H3, and GMPS. We aimed to investigate whether or not they are truly target proteins for afatinib. The results showed that the degradation of thymidylate kinase (DTYMK), adenylosuccinate lyase (ADSL), nucleoside diphosphate kinase (Nm23-H1/H2/H3) and GMP synthase (GMPS) in cells occurred when the cells were treated with 10 μM afatinib. However, when the cells were treated with lower concentrations of afatinib, these proteins accumulated, due to increased protein synthesis (DTYMK, ADSL and GMPS) or decreased protein degradation (Nm23-H1/H2/H3). Using various protein degradation inhibitors, it was found that DTYMK and Nm23-H1/H2/H3 degradation was mediated by lysosomal pathways. In conclusion, afatinib does affect these four proteins and has great potential for treating diseases caused by changes in these four proteins. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:42:54Z (GMT). No. of bitstreams: 1 ntu-107-R02b46020-1.pdf: 12084733 bytes, checksum: b55eed0d3132887adcea18f7b2d546f6 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii 英文摘要 iii 縮寫表 v 目錄 viii 第一章 緒論 1 1.1 非小細胞肺癌 (Non-small cell lung cancer, NSCLC) 1 1.2 表皮生長因子 (EGF) 與表皮生長因子受體 (EGFR) 2 1.3 Afatinib 4 1.4 小分子藥物的目標鑑定 5 1.4.1 小分子藥物的發展 5 1.4.2 藥物目標鑑定方法 6 1.5 共價藥物 8 1.6 麥可加成反應 (Michael Addition) 11 1.7 Afatinib作用之其他標靶蛋白 12 1.7.1 DTYMK (deoxythymidylate kinase) 12 1.7.2 Nm23-H1/H2/H3 13 1.7.3 ADSL (Adenylosuccinate lyase) 14 1.7.4 GMPS (guanine monophosphate synthetase) 16 1.8 研究動機 17 第二章 材料與實驗方法 18 2.1 細胞實驗方法 18 2.1.1 細胞培養 (cell culture) 18 2.1.2 細胞繼代 18 2.1.3 藥物處理細胞 18 2.2 蛋白質實驗方法 19 2.2.1 細胞蛋白質樣本製備 19 2.2.2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis, SDS-PAFE) 19 2.2.3 蛋白質轉印 21 2.2.4 西方點墨法 (Western Blot) 21 第三章 結果 23 3.1 處理Afatinib二十四小時對於Nm23-H1/H2/H3、DTYMK、GMPS、ADSL蛋白質表現量的影響 23 3.2 處理Afatinib四十八小時對於Nm23-H1/H2/H3、DTYMK、GMPS、ADSL蛋白質表現量的影響 24 3.3 處理Afatinib七十二小時對於Nm23-H1/H2/H3、DTYMK、GMPS、ADSL蛋白質表現量的影響 26 3.4 Afatinib使DTYMK降解是經由Lysosome degradation pathway 27 3.5 Afatinib使Nm23-H1/H2/H3降解是經由Lysosome degradation pathway 28 3.6 Afatinib誘導GMPS與ADSL降解路徑的探討 28 3.7 Afatinib是經由蛋白質生合成途徑促使的DTYMK蛋白質表現量上升 29 3.8 Afatinib是經由蛋白質生合成途徑促使GMPS蛋白質表現量上升 30 3.9 Afatinib是經由蛋白質生合成途徑促使ADSL蛋白質表現量上升 31 3.10 Afatinib影響Nm23-H1/H2/H3蛋白質表現量之探討 31 第四章 討論 33 4.1 標靶藥物的專一性 33 4.2 以抗體尋找藥物目標蛋白 34 4.3 藥物標靶蛋白鑑定於合併療法的應用 35 4.4 Afatinib造成細胞內Nm23-H1/H2/H3、DTYMK、GMPS、ADSL降解路徑之探討 36 4.5 Afatinib誘導Nm23-H1/H2/H3、DTYMK、GMPS、ADSL蛋白質表現量上升之探討 37 第五章 結語 38 第六章 實驗結果圖表 39 圖1 處理24小時Afatinib濃度遞增對於ADSL、Nm23-H1/H2/H3、GMPS、DTYMK蛋白質表現量影響 39 圖2 處理48小時Afatinib濃度遞增對於ADSL、Nm23-H1/H2/H3、GMPS、DTYMK蛋白質表現量影響 40 圖3 處理72小時Afatinib濃度遞增對於ADSL、Nm23-H1/H2/H3、GMPS、DTYMK蛋白質表現量影響 41 圖4 Afatinib促使ADSL、Nm23-H1/H2/H3、GMPS、DTYMK降解的路徑 42 圖5 合併處理 Afatinib 與 Cycloheximide 探討蛋白質累積現象原因 43 第七章 參考文獻 44 第八章 附錄 50 附圖1 表皮生長因子二聚化過程與訊息傳遞路徑 50 附圖2 EGFR的突變位置 51 附圖3 Afatinib的化學結構和可被親核基攻擊的位置 52 附圖4 以ABPP (activity-based protein profiling) 鑑定藥物目標蛋白流程 53 附圖5 小分子目標蛋白鑑定方法:正向選擇與負向選擇 54 附圖6 麥可加成反應 (Michael Addition) 55 附圖7 PC14處理不同濃度與時間Afatinib的訊號模式 56 附圖8 合併 Afatinib 與 Doxorubicin 處理PC14細胞 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿法替尼 | zh_TW |
| dc.subject | 共價藥物 | zh_TW |
| dc.subject | 麥可加成反應 | zh_TW |
| dc.subject | afatinib | en |
| dc.subject | Michael addition | en |
| dc.subject | covalent drug | en |
| dc.title | 抗癌藥物afatinib作用EGFR外之其它標靶蛋白 | zh_TW |
| dc.title | Effects of afatinib through other target proteins than EGFR | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宏文,張?仁,張茂山 | |
| dc.subject.keyword | 共價藥物,麥可加成反應,阿法替尼, | zh_TW |
| dc.subject.keyword | afatinib,covalent drug,Michael addition, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201800334 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 11.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
