Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊zh_TW
dc.contributor.author楊展維zh_TW
dc.contributor.authorChan-Wei Yangen
dc.date.accessioned2021-06-17T03:42:41Z-
dc.date.available2023-12-07-
dc.date.copyright2018-03-29-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationReferences
1. Hoenig, M. P., and Zeidel, M. L. (2014) Homeostasis, the milieu interieur, and
the wisdom of the nephron. Clinical journal of the American Society of
Nephrology : CJASN 9, 1272-1281
2. Wall, S. M., Han, J. S., Chou, C. L., and Knepper, M. A. (1992) Kinetics of urea
and water permeability activation by vasopressin in rat terminal IMCD. The
American journal of physiology 262, F989-998
3. Nielsen, S., Frokiaer, J., Marples, D., Kwon, T. H., Agre, P., and Knepper, M. A.
(2002) Aquaporins in the kidney: from molecules to medicine. Physiological
reviews 82, 205-244
4. Preston, G. M., Carroll, T. P., Guggino, W. B., and Agre, P. (1992) Appearance
of water channels in Xenopus oocytes expressing red cell CHIP28 protein.
Science (New York, N.Y.) 256, 385-387
5. Kozono, D. (2002) Aquaporin water channels: atomic structure molecular
dynamics meet clinical medicine. 109, 1395-1399
6. Jung, J. S., Preston, G. M., Smith, B. L., Guggino, W. B., and Agre, P. (1994)
Molecular structure of the water channel through aquaporin CHIP. The hourglass
model. The Journal of biological chemistry 269, 14648-14654
7. Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., and Sasaki, S. (1993)
38
Cloning and expression of apical membrane water channel of rat kidney
collecting tubule. Nature 361, 549-552
8. Agre, P., Sasaki, S., and Chrispeels, M. J. (1993) Aquaporins: a family of water
channel proteins. The American journal of physiology 265, F461
9. Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., and
Knepper, M. A. (1995) Vasopressin increases water permeability of kidney
collecting duct by inducing translocation of aquaporin-CD water channels to
plasma membrane. Proceedings of the National Academy of Sciences of the
United States of America 92, 1013-1017
10. Sabolic, I., Katsura, T., Verbavatz, J. M., and Brown, D. (1995) The AQP2 water
channel: effect of vasopressin treatment, microtubule disruption, and distribution
in neonatal rats. The Journal of membrane biology 143, 165-175
11. Yamamoto, T., Sasaki, S., Fushimi, K., Ishibashi, K., Yaoita, E., Kawasaki, K.,
Marumo, F., and Kihara, I. (1995) Vasopressin increases AQP-CD water channel
in apical membrane of collecting duct cells in Brattleboro rats. The American
journal of physiology 268, C1546-1551
12. Fushimi, K., Sasaki, S., and Marumo, F. (1997) Phosphorylation of serine 256 is
required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water
channel. The Journal of biological chemistry 272, 14800-14804
39
13. Kuwahara, M., Fushimi, K., Terada, Y., Bai, L., Marumo, F., and Sasaki, S.
(1995) cAMP-dependent phosphorylation stimulates water permeability of
aquaporin-collecting duct water channel protein expressed in Xenopus oocytes.
The Journal of biological chemistry 270, 10384-10387
14. Matsuzaki, T., Suzuki, T., Koyama, H., Tanaka, S., and Takata, K. (1999) Water
channel protein AQP3 is present in epithelia exposed to the environment of
possible water loss. The journal of histochemistry and cytochemistry : official
journal of the Histochemistry Society 47, 1275-1286
15. Arima, H., Azuma, Y., Morishita, Y., and Hagiwara, D. (2016) Central diabetes
insipidus. Nagoya journal of medical science 78, 349-358
16. Moeller, H. B., Rittig, S., and Fenton, R. A. (2013) Nephrogenic diabetes
insipidus: essential insights into the molecular background and potential
therapies for treatment. Endocrine reviews 34, 278-301
17. Oksche, A., and Rosenthal, W. (1998) The molecular basis of nephrogenic
diabetes insipidus. Journal of molecular medicine (Berlin, Germany) 76,
326-337
18. Barile, M., Pisitkun, T., Yu, M. J., Chou, C. L., Verbalis, M. J., Shen, R. F., and
Knepper, M. A. (2005) Large scale protein identification in intracellular
aquaporin-2 vesicles from renal inner medullary collecting duct. Molecular &
40
cellular proteomics : MCP 4, 1095-1106
19. Tajika, Y., Matsuzaki, T., Suzuki, T., Ablimit, A., Aoki, T., Hagiwara, H.,
Kuwahara, M., Sasaki, S., and Takata, K. (2005) Differential regulation of AQP2
trafficking in endosomes by microtubules and actin filaments. Histochemistry
and cell biology 124, 1-12
20. Procino, G., Barbieri, C., Carmosino, M., Tamma, G., Milano, S., De Benedictis,
L., Mola, M. G., Lazo-Fernandez, Y., Valenti, G., and Svelto, M. (2011)
Fluvastatin modulates renal water reabsorption in vivo through increased AQP2
availability at the apical plasma membrane of collecting duct cells. Pflugers
Archiv : European journal of physiology 462, 753-766
21. Nedvetsky, P. I., Stefan, E., Frische, S., Santamaria, K., Wiesner, B., Valenti, G.,
Hammer, J. A., 3rd, Nielsen, S., Goldenring, J. R., Rosenthal, W., and
Klussmann, E. (2007) A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2
shuttle. Traffic (Copenhagen, Denmark) 8, 110-123
22. Girard, E., Chmiest, D., Fournier, N., Johannes, L., Paul, J. L., Vedie, B., and
Lamaze, C. (2014) Rab7 is functionally required for selective cargo sorting at
the early endosome. Traffic (Copenhagen, Denmark) 15, 309-326
23. Seaman, M. N., Harbour, M. E., Tattersall, D., Read, E., and Bright, N. (2009)
Membrane recruitment of the cargo-selective retromer subcomplex is catalysed
41
by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. Journal of
cell science 122, 2371-2382
24. Steinberg, F., Gallon, M., Winfield, M., Thomas, E. C., Bell, A. J., Heesom, K. J.,
Tavare, J. M., and Cullen, P. J. (2013) A global analysis of SNX27-retromer
assembly and cargo specificity reveals a function in glucose and metal ion
transport. Nature cell biology 15, 461-471
25. Delprato, A., Merithew, E., and Lambright, D. G. (2004) Structure, exchange
determinants, and family-wide rab specificity of the tandem helical bundle and
Vps9 domains of Rabex-5. Cell 118, 607-617
26. Pan, X., Eathiraj, S., Munson, M., and Lambright, D. G. (2006) TBC-domain
GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
Nature 442, 303-306
27. Pfeffer, S. R. (2005) Structural clues to Rab GTPase functional diversity. The
Journal of biological chemistry 280, 15485-15488
28. Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005) Rab conversion as a
mechanism of progression from early to late endosomes. Cell 122, 735-749
29. Poteryaev, D., Datta, S., Ackema, K., Zerial, M., and Spang, A. (2010)
Identification of the switch in early-to-late endosome transition. Cell 141,
497-508
42
30. Pankiv, S., Alemu, E. A., Brech, A., Bruun, J. A., Lamark, T., Overvatn, A.,
Bjorkoy, G., and Johansen, T. (2010) FYCO1 is a Rab7 effector that binds to
LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. The
Journal of cell biology 188, 253-269
31. Jordens, I., Fernandez-Borja, M., Marsman, M., Dusseljee, S., Janssen, L.,
Calafat, J., Janssen, H., Wubbolts, R., and Neefjes, J. (2001) The Rab7 effector
protein RILP controls lysosomal transport by inducing the recruitment of
dynein-dynactin motors. Current biology : CB 11, 1680-1685
32. Cantalupo, G., Alifano, P., Roberti, V., Bruni, C. B., and Bucci, C. (2001)
Rab-interacting lysosomal protein (RILP): the Rab7 effector required for
transport to lysosomes. The EMBO journal 20, 683-693
33. Wang, T., Ming, Z., Xiaochun, W., and Hong, W. (2011) Rab7: Role of its
protein interaction cascades in endo-lysosomal traffic. Cellular Signalling 23,
516-521
34. Wassmer, T., Attar, N., Harterink, M., van Weering, J. R. T., Traer, C. J., Oakley,
J., Goud, B., Stephens, D. J., Verkade, P., Korswagen, H. C., and Cullen, P. J.
(2009) The Retromer Coat Complex Coordinates Endosomal Sorting and
Dynein-Mediated Transport, with Carrier Recognition by the trans-Golgi
Network. Developmental Cell 17, 110-122
43
35. Norwood, S. J., Shaw, D. J., Cowieson, N. P., Owen, D. J., Teasdale, R. D., and
Collins, B. M. (2011) Assembly and solution structure of the core retromer
protein complex. Traffic (Copenhagen, Denmark) 12, 56-71
36. van Kerkhof, P., Lee, J., McCormick, L., Tetrault, E., Lu, W., Schoenfish, M.,
Oorschot, V., Strous, G. J., Klumperman, J., and Bu, G. (2005) Sorting nexin 17
facilitates LRP recycling in the early endosome. The EMBO journal 24,
2851-2861
37. Lauffer, B. E., Melero, C., Temkin, P., Lei, C., Hong, W., Kortemme, T., and von
Zastrow, M. (2010) SNX27mediates PDZ-directed sorting from endosomes to
the plasma membrane. The Journal of cell biology 190, 565-574
38. Seaman, M. N., Marcusson, E. G., Cereghino, J. L., and Emr, S. D. (1997)
Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p,
requires the function of the VPS29, VPS30, and VPS35 gene products. The
Journal of cell biology 137, 79-92
39. Nothwehr, S. F., Ha, S. A., and Bruinsma, P. (2000) Sorting of yeast membrane
proteins into an endosome-to-Golgi pathway involves direct interaction of their
cytosolic domains with Vps35p. The Journal of cell biology 151, 297-310
40. Nothwehr, S. F., Bruinsma, P., and Strawn, L. A. (1999) Distinct domains within
Vps35p mediate the retrieval of two different cargo proteins from the yeast
44
prevacuolar/endosomal compartment. Molecular biology of the cell 10, 875-890
41. Lee, M. S., Choi, H. J., Park, E. J., Park, H. J., and Kwon, T. H. (2016)
Depletion of vacuolar protein sorting-associated protein 35 is associated with
increased lysosomal degradation of aquaporin-2. American journal of physiology.
Renal physiology 311, F1294-f1307
42. Liu, J. J. (2016) Retromer-Mediated Protein Sorting and Vesicular Trafficking.
Journal of genetics and genomics = Yi chuan xue bao 43, 165-177
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70085-
dc.description.abstract第 二型水通道蛋白(aquaporin-2, AQP2) 是一個受到抗利尿激素(vasopressin, AVP) 調控的水通道蛋白,功能為調控腎臟集尿管對水的再吸收。腎臟集尿管上皮細胞受到抗利尿激素的刺激後,會使得細胞內的AQP2 被運輸到頂膜(apical plasma membrane) 以增加集尿管對水的通透性。先前的研究指出小型GTP 酶(Rab small GTPases, Rab5 and Rab11) 參與在AQP2 的運輸中。我的研究主要專注於Rab7 在AQP2 運輸中所扮演的角色。在腎臟集尿管細胞株mpkCCD 細胞中,Rab7 gene knockdown 使得AQP2 在受到dDAVP (AVP 類似物) 的刺激後無法被運輸到頂膜並累積在內體(Rab5-positive early endosome)中。結果顯示了Rab7參與在AQP2 頂膜運輸的過程。先前的報導也提到Rab7 可以藉由聚集含有Vps35與Snx27 的retromer 複合體來調控膜蛋白的運輸。為了研究Rab7 是不是藉由上述的方式調控AQP2 的頂膜運輸,我將mpkCCD 細胞中的Vps35 gene knockdown,並發現藉由dDAVP 所引發的AQP2 頂膜運輸受到了影響使得AQP2 累積在內體(Rab11-positive recycling endosome)中。這樣的結果顯示了Vps35 也參與在AQP2的頂膜運輸中。Snx27 具有PDZ domain 並可能藉由AQP2 C 端的PDZ motif 與之結合。當Snx27gene knockdown 後在dDAVP 的刺激下AQP2 也無法被順利的運輸到頂膜且累積在頂膜的下方。我的結果顯示了Rab7 可能是藉由兩個屬於retromer
複合體的蛋白Vps35 與Snx27 來調控AVP 所刺激的AQP2 頂膜運輸。
zh_TW
dc.description.abstractAquaporin-2 (AQP2) is a vasopressin (AVP) regulated water channel that plays an important role in water reabsorption in the renal collecting duct. In response to AVP, AQP2 traffics from cytoplasm to the apical plasma membrane of the renal collecting duct principal cells thereby increasing water permeability of the renal collecting duct. Previous studies have shown that Rab small GTPases (Rab5 and Rab11) participate in AQP2 trafficking. In this study, I studied potential roles of Rab7 in AQP2 trafficking. In the renal collecting cell model (mpkCCD), Rab7 knockdown impaired AQP2 apical plasma membrane trafficking and caused AQP2 to accumulate in Rab5-positive early endosome in the presence of the AVP analog dDAVP, suggesting a role of Rab7 in AQP2 apical plasma membrane trafficking. Rab7 has been shown to mediate membrane protein targeting by recruiting the retromer protein complex that contains Vps35 and Snx27. To investigate whether similar mechanism participates in apical AQP2 trafficking, I knocked down Vps35 in the mpkCCD cells and found that dDAVP-induced AQP2 apical plasma membrane trafficking was impaired. Under the above conditions, AQP2 accumulated in Rab11-positive recycling endosomes in the presence of dDAVP, suggesting a role of Vps35 in AQP2 apical plasma membrane trafficking. Snx27contains a PDZ domain that could potentially bind the PDZ motif at the AQP2 COOH-terminus. When Snx27was knocked down in the mpkCCD cells, AQP2 failed to traffic to the apical plasma membrane and accumulated in sub-apical plasma membrane regions in the presence of dDAVP. My data suggest that Rab7 participates at different stages of vasopressin-induced apical AQP2 trafficking potentially involving two retromer complex proteins, Vps35 and Snx27.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:42:41Z (GMT). No. of bitstreams: 1
ntu-107-R04442027-1.pdf: 1653139 bytes, checksum: 296184f75e071e79e47fe2aca1425108 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 .................................................................................................................................. 2
Abstract ........................................................................................................................... 3
Introduction .................................................................................................................... 5
Water homeostasis is maintained by the kidneys ................................................ 5
Vasopressin regulates water excretion via the water channel protein
aquaporin-2............................................................................................................. 6
Apical AQP2 abundance is regulated by vasopressin via vesicle trafficking.... 8
Rab small GTPases (Rabs) .................................................................................... 9
Rab7 is a multi-functional small GTPase ............................................................. 9
Materials and Methods ................................................................................................ 12
Cell culture ............................................................................................................ 12
Surface biotin labeling ......................................................................................... 12
Immunofluorescence microscopy........................................................................ 13
Small hairpin RNA mediated gene knockdown................................................. 14
Quantitative real-time PCR................................................................................. 15
Co-transfection GFP-Rab with AQP2 ................................................................ 15
Results............................................................................................................................ 17
AQP2 trafficked among endosomal system........................................................ 17
Rab7 mediates AQP2 apical trafficking ............................................................. 19
Rab7 mediates AQP2 apical plasma membrane trafficking by recruiting the
retromer complex.................................................................................................. 21
Sorting nexin 27 participates in AQP2 apical plasma membrane trafficking 23
Discussion ...................................................................................................................... 25
Figures ........................................................................................................................... 29
References...................................................................................................................... 37
-
dc.language.isozh_TW-
dc.subject小型G蛋白zh_TW
dc.subject第二型水通道蛋白zh_TW
dc.subject膜蛋白運輸zh_TW
dc.subject膜蛋白運輸zh_TW
dc.subject小型G蛋白zh_TW
dc.subject第二型水通道蛋白zh_TW
dc.subjectSnx27en
dc.subjecttraffickingen
dc.subjectSnx27en
dc.subjectretromeren
dc.subjectRaben
dc.subjectAQP2en
dc.subjecttraffickingen
dc.subjectAQP2en
dc.subjectRaben
dc.subjectretromeren
dc.title小型 G 蛋白Rab7 聚集Retromer 以調控第二型水通道 蛋白的頂膜運輸zh_TW
dc.titleSmall G-Protein Rab7 Recruits Retromer for Aquaporin-2 Apical Plasma Membrane Traffickingen
dc.typeThesis-
dc.date.schoolyear106-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李芳仁;劉雅雯zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword第二型水通道蛋白,小型G蛋白,膜蛋白運輸,zh_TW
dc.subject.keywordAQP2,Rab,retromer,Snx27,trafficking,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU201800365-
dc.rights.note未授權-
dc.date.accepted2018-02-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved