Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑(Kun-You Lin)
dc.contributor.authorShiuan-You Huangen
dc.contributor.author黃炫又zh_TW
dc.date.accessioned2021-06-17T03:41:52Z-
dc.date.available2021-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-06
dc.identifier.citation[1] L. Yu and W. M. Snelgrove, “A novel adaptive mismatch cancellation system for quadrature IF radio receivers,” IEEE Trans. Circuits and Syst. II, Analog Digit. Signal Process., vol. 46, no. 6, pp. 789–801, Jun. 1999.
[2] M. Valkama et al., “Advanced DSP for I/Q imbalance compensation in a low-IF receiver,” in IEEE Int. Conf. Commun., vol. 2, Jun. 2000, pp. 18–22.
[3] L Der and B. Razavi, “A 2-GHz CMOS image reject receiver with LMS calibration,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 167–175, Feb. 2003.
[4] S. Shahramian, Y. Baeyens, and Y.-K. Chen, “A 70-100 direct-conversion transmitter and receiver phased array chipset in 0.18µm SiGe BiCMOS technology”, in Proc. RFIC Symp., Jun. 2012, pp. 123-127
[5] Z.-M. Tsai, H.-C. Liao, Y.-H. Hsiao, and H. Wang, “ -band high datarate I/Q modulator and demodulator with a power-locked loop LO source in 0.15- m GaAs pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2670–2684, Jul. 2013.
[6] J. Kim, W. Choi, Y. Park, and Y. Kwon, “60 GHz broadband image rejection receiver using varactor tuning,” in Proc. RFIC Symp., Jun. 2010, pp. 381–384.
[7] V. Jian, F. Taeng, and P. Heydari, “ A single-chip dual-band 22-29 GHz/77-81 GHz BiCMOS transceiver for automotive radars,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb.2009, pp. 308–309.
[8] E. Ragonese, A. Scuderi, V. Giammello, E. Messina, and G. Palmisano, “A fully integrated 24 GHz UWB radar sensor for automotive applications,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2009, pp. 306–307.
[9] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974–3985, Nov. 2013.
[10] C.-A. Hsieh, Y.-H. Lin, and H. Wang, “A miniature 52-66-GHz sub-harmonic IQ demodulator with low LO power in 65-nm CMOS,” in Asia-Pacific Microw. Conf., Nov. 2014, pp. 1199 – 1201.
[11] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075–2085, Oct. 2007.
[12] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, “A 30–65 GHz reduced-size modulator with low LO power using sub-harmonic pumping in 90-nm CMOS technology,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2012, pp. 491–494.
[13] Y.-H. Lin, J.-L Kuo, and H. Wang, 'A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,' in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2012, pp. 491-494.
[14] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
[15] C. C. Boon and X. Yi, “A 10-67 GHz 1.44 mW 20.7 dB gain VGA-embedded downconversion mixer with 40 dB variable gain range,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 466–468, Jul. 2014.
[16] C.-L. Kuo, Bo-Jr Huang, C.-C. Kuo, K.-Y. Lin and H. Wang, “A 10-35 GHz low-power bulk-driven mixer using 0.13 um CMOS process,” IEEE Microw. Wireless Compon. Lett. , vol. 18, no. 7, pp. 455–457, Jun. 2008.
[17] W.-C. Wang, S.-H. Weng and H.-Y. Chang, “A 25-to-70 GHz and low LO power mixer using modified SiGe NMOS-HBT Darlington cell for gigabit BPSK demodulation,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1–3.
[18] M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, “A 20–32 GHz wideband mixer with 12 GHz IF bandwidth in 0.18- m SiGe process,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2731–2740, Nov. 2010.
[19] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang, “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[20] F. Zhu et al., “A broadband low-power millimeter wave CMOS downconversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 138–142, Mar. 2014.
[21] C.-L. Wu, C. Yu, and K. O. Kenneth, “Amplification of nonlinearity in multiple-gate transistor millimeter wave mixer for improvement of linearity and noise margin,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 310–312, May 2015.
[22] C.-L. Wu, Y. H. Yun, C. Yu, and K. K. O, “High linearity 23–33 GHz SOI CMOS downconversion double balanced mixer,” IEEE Electron. Lett., vol. 47, no. 23, pp. 1283–1284, Nov. 2011.
[23] M. El-Nozahi, E. Sánchez-Sinencio, and K. Entesari, “A 20–32 GHz wideband mixer with 12 GHz IF bandwidth in 0.18- μm SiGe process,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2731–2740, Nov. 2010.
[24] D. Ahn, D.-W. Kim, and S. Hong, “A K-band high-gain down-conversion mixer in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 227–229, Apr. 2009.
[25] J. Wells, “Faster than fiber: the future of Multi-Gb/s wireless,” IEEE Microwave Magazine, vol. 10, no.3, 2009, pp. 104-112, 2009.
[26] J. Wells, Multigigabit Microwave and Millimeter-Wave Wireless Communications, USA : Artech House, 2010.
[27] “Allocations and service rules for the 71-76 GHz, 81-86 GHz and 92-95 GHz bands,” FCC, Washington, DC, USA, FCC 05-45, 2005.
[28] “Radio frequency channel arrangements for fixed service systems operating in the bands 71-76 GHz and 81-86 GHz,” ECC, Copenhagen, Denmark, ECC Recommendation (05) 07, 2009 (revised Dublin) and 2013 (Lugano).
[29] B. Razavi, “Design considerations for direct-conversion receivers, ” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp.428-435, Jan. 1997.
[30] Z.-M. Tsai, H.-C. Liao, Y.-H. Hsiao, and H. Wang, “V-band high datarate I/Q modulator and demodulator with a power-locked loop LO source in 0.15- m GaAs pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2670–2684, Jul. 2013.
[31] B. Razavi, RF Microelectronics, 2nd, Pearson Prentice, 2011.
[32] T.-H. Wu, S.-C. Tseng, C.-C. Meng, and G.-W. Huang, “GaInP/GaAs HBT sub-harmonic Gilbert mixers using stacked-LO and leveled-LO topologies,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 880–889, May 2007.
[33] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762–1766, Oct. 2003.
[34] David M. Pozar, Microwave and RF Design of Wireless Systems, 1st, John Wiley & Sons Inc., 2000.
[35] Y. H. Lin, J. L. Kuo, H. Wang, “A 60 GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique, ” 7th European Microwave Integrated Circuits Conference (EuMIC), pp. 365-368, Oct. 2012.
[36] G. Yang, Z. Wang, Z. Li, Q. Li, and F. Liu, “Balance-compensated asymmetric marchand baluns on Silicon for MMICs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 391–393, Jun. 2014.
[37] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3469–3485, Dec. 2009.
[38] E. Ragonese, A. Scuderi, V. Giammello, E. Messina, and G. Palmisano, “A fully integrated 24GHz UWB radar sensor for automotive applications,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 306–307.
[39] H.-Y. Wang, K.-F. Wei, J.-S. Lin, and H.-R. Chuang, “A 1.2-V low LO-power 3–5 GHz broadband CMOS folded-switching mixer for UWB receiver,” in IEEE Radio Freq. Integr. Circuits Symp., Apr. 2008, pp. 621–624.
[40] H.-W. Chung, H.-C. Kuo, and H.-R. Chuang, “A 1.5-V 6–10-GHz low LO-power broadband CMOS folded-mirror mixer for UWB radio,” in Proc. Asian-Pac. Microw. Conf., Dec. 2007, pp. 1–4.
[41] S.-H. Chang, J.-K. Huang and C.-H. Tseng, “A 5.8-GHz CMOS low-power active mixer featuring high conversion gain and low LO driving power, ” in Proc. Asian-Pac. Microw. Conf., vol. 2,Dec. 2015, pp. 1-3.
[42] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1350–1360, May 2011.
[43] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453- W 53–70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 1903–1912, May 2013.
[44] F. Zhu et al., “A broadband low-power millimeter wave CMOS downconversion mixer with improved linearity,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 138–142, Mar. 2014.
[45] H. Zijie and K. Mouthaan, “A 1-to 10-GHz RF and wideband IF crosscoupled Gilbert mixer in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 726–730, Nov. 2013.
[46] H. G. Han, D. H. Jung, and T. W. Kim, “A 2.88 mW +9.06 dBm IIP3 common-gate LNA with dual cross-coupled capacitive feedback,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp. 1019–1025, Mar. 2015.
[47] S. Kong, C.-Y. Kim, and S. Hong, “A -band UWB low noise CMOS mixer with bleeding path GM-boosting technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 3, pp. 117–121, Mar. 2013.
[48] Z. Heng and E. Sanchez-Sinencio, “Linearization techniques for CMOS low noise amplifiers: A tutorial,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 22–36, Jan. 2011.
[49] C. Xin and E. Sánchez-Sinencio, “A linearization technique for RF low noise amplifier,” in Proc. IEEE Int Circuits Syst. Symp., Vancouver, BC, Canada, May 2004, vol. 4, pp. 313–316.
[50] Y. S. Youn, J. H. Chang, K. J. Koh, Y. J. Lee, and H. K. Yu, “A 2 GHz 16 dBm IIP3 low noise amplifier in 0.25 μm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2003, pp. 452–453.
[51] H. M. Geddada, J. W. Park, and J. Silva-Martinez, “Robust derivative superposition method for linearizing broadband LNAs,” IEEE Electron. Lett., vol. 45, no. 9, pp. 435–436, Apr. 2009.
[52] N. Kim, V. Aparin, K. Barnett, and C. Persico, “A cellular-band CDMA CMOS LNA linearized using active post-distortion,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1530–1534, Jul. 2006.
[53] T.-S. Kim and B.-S. Kim, “Post-linearization of cascode CMOS LNA using folded PMOS IMD sinker,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 182–184, Apr. 2006.
[54] H. Zhang, X. Fan, and E. Sánchez-Sinencio, “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009.
[55] B. Q. Guo and X. L. Li, “A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 23, no. 11, pp. 608–610, 2013.
[56] H.-Y. Chang, “Design of broadband highly linear IQ modulator,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491–493, Jul. 2008.
[57] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 20–30, Jan. 2006.
[58] H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, and C.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 908–919, Mar. 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70070-
dc.description.abstract本篇論文探討應用於微波與毫米波頻段調變器與混頻器的之研究,依據電路不同的應用而分成三個部分論述。
第一部分闡述一個實現90奈米互補式金氧半場效電晶體製程(CMOS)用於E頻段之正交調變器(I/Q Modulator)。採用次諧波混頻器(Sub-harmonic Mixer)的架構來實現高頻段的設計,此調變器在33毫瓦功耗和9 dB本地振盪(LO)功率下,於71 – 86 GHz範圍有-8 dB的轉換增益、-16 dBm的一分貝壓縮輸出功率(OP1dB)、11 dBc的鏡像抑制比(Image Rejection Ratio)。
第二部分闡述一個實現90奈米互補式金氧半場效電晶體製程之降頻混頻器,整體操作頻率為Ku頻段、K頻段以及Ka頻段,在混頻器開關級使操作在弱反轉區,可以使混頻器在低本地振盪功率的應用,可以舒緩壓控振盪器(VCO)的設計,此混頻器在11毫瓦功耗和-6 dB本地振盪功率下,於14 – 40 GHz範圍有3.2 dB的轉換增益、-3.5 dBm的一分貝壓縮輸入功率(IP1dB)。
最後一部份是一個實現以180奈米互補式金氧半場效電晶體製程用於K頻段之線性化降頻混頻器。採用後失真線性化(Post-Distortion)技術來改善線性度,在電路中加入一個電晶體開關做切換,分成後失真線性化模式以及一般電流注入模式比較。此混頻器在32毫瓦功率和0 dB本地振盪功率下,於20 – 32 GHz範圍有-0.37 dB的轉換增益、2.5 dBm的一分貝壓縮輸入功率、輸入三階截斷點(IIP3)為17 dBm。
zh_TW
dc.description.abstractIn this thesis, we discuss the researches of modulator and mixer for microwave or millimeter-wave applications.
The first part presents an I/Q modulator in 90-nm CMOS process for E-band. The modulator attains -8 dB conversion gain from 71 to 86 GHz, -16 dBm OP1dB, 11 dBc IRR with only 33 mW power consumption and 9 dBm LO power by sub-harmonic mixers.
The second part presents a wideband down conversion mixer in 90-nm CMOS process for Ku-Band, K-band and Ka-band. In this mixer, the switch stage operates in the weak-inversion region for low LO power application and reduces the design of VCO. The mixer attains 3.2 dB conversion gain from 14 to 40 GHz, -3.5 dBm IP1dB with only 11 mW power consumption and -6 dBm LO power.
The last part presents a linearity down conversion mixer in 180-nm CMOS process for K-band. In this mixer which uses the post-distortion linearity technology to improve the linearity. In the structure, we use the transistor switch to divide into two states that are post-distortion state and current bleeding state to compare performance. The mixer attains -0.37 dB conversion gain from 20 to 32 GHz, 2.5 dBm IP1dB, 17 dBm IIP3 with only 32 mW power consumption and 0 dBm LO power.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:41:52Z (GMT). No. of bitstreams: 1
ntu-107-R03942084-1.pdf: 4129100 bytes, checksum: ec07c7ce06c71ab506e5c5eab74e08ca (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xvi
Chapter 1 論文介紹 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 微波I/Q調變器 2
1.2.2 寬頻降頻混頻器 5
1.2.3 線性降頻混頻器 7
1.3 論文貢獻 9
1.4 章節架構 10
Chapter 2 E頻段寬頻次諧波正交調變器 11
2.1 前言介紹 11
2.2 電路設計規格 12
2.3 電路結構圖 13
2.4 電路設計流程 14
2.4.1 單邊帶抑制原理 14
2.4.2 單平衡與雙平衡混頻器架構介紹[31] 16
2.4.3 次諧波混頻器架構與設計 20
2.4.4 威爾金森功率分配器與結合器設計[34] 32
2.4.5 45°相移器設計[9] 34
2.4.6 耦合器設計[33] 38
2.4.7 RF與LO馬遜巴倫設計[36] 40
2.5 電路佈局 41
2.6 模擬與量測結果 44
2.6.1 LO訊號模擬與模量測結果 44
2.6.2 LO頻率模擬與量測結果 45
2.6.3 AM-AM特性模擬與量測結果 47
2.6.4 調變訊號模擬 48
2.7 電路除錯 51
2.8 概要 55
2.9 討論 57
Chapter 3 超寬頻低本地振盪功率應用降頻混頻器 58
3.1 前言介紹 58
3.1.1 轉導級架構介紹 59
3.1.2 轉導級架構比較 61
3.1.3 電流注入技術介紹[47] 68
3.1.4 混頻器操作於弱反轉區介紹[43] 71
3.2 電路設計 72
3.2.1 設計流程 72
3.2.2 LO與RF馬遜巴倫設計 86
3.3 電路佈局 87
3.4 模擬與量測結果 89
3.4.1 LO訊號模擬與量測結果 89
3.4.2 LO頻率模擬與量測結果 90
3.4.3 IF頻率模擬與量測結果 92
3.4.4 AM-AM特性模擬結果 93
3.5 電路除錯 94
3.6 摘要 97
Chapter 4 寬頻後失真線性化降頻混頻器 99
4.1 前言介紹 99
4.1.1 多閘極線性化介紹 99
4.1.2 後失真線性化介紹[52]-[54] 101
4.2 電路設計 103
4.2.1 LO與RF馬遜巴倫設計 103
4.2.2 轉導級架構選擇 104
4.2.3 設計流程 106
4.3 電路佈局 120
4.4 模擬與量測結果 122
4.4.1 LO訊號模擬與量測結果 122
4.4.2 LO頻率模擬與量測結果 122
4.4.3 IF頻率模擬與量測結果 124
4.4.4 AM-AM特性模擬與量測結果 125
4.4.5 IIP3模擬與量測結果 126
4.5 摘要 128
Chapter 5 結論 131
REFERENCE 133
dc.language.isozh-TW
dc.subjectE頻段zh_TW
dc.subject次諧波混頻器zh_TW
dc.subject正交調變器zh_TW
dc.subject超寬頻zh_TW
dc.subjectKu頻段zh_TW
dc.subjectK頻段zh_TW
dc.subject降頻混頻器zh_TW
dc.subject低本地振盪功率應用zh_TW
dc.subject線性化zh_TW
dc.subject後失真線性化zh_TW
dc.subject電流注入zh_TW
dc.subjectcurrent bleedingen
dc.subjectE-banden
dc.subjectsub-harmonic mixeren
dc.subjectI/Q modulatoren
dc.subjectultra widebanden
dc.subjectKu-banden
dc.subjectK-banden
dc.subjectdown conversion mixeren
dc.subjectlinearityen
dc.subjectpost distortionen
dc.titleE頻段寬頻正交調變器、超寬頻低本地振盪功率應用降頻混頻器與寬頻後失真線性化降頻混頻器之研究zh_TW
dc.titleResearch on Wideband IQ Modulator for E-Band Application, Ultra Wideband Down-Conversion Mixer with Low LO Power, and Wideband Down-Conversion Mixer by using Post Distortion Linearity Techniqueen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王暉(Huei Wang),蔡政翰(Jeng-Han Tsai),蔡作敏(Zuo-Min Tsai),高?堯(Kun-Yao Kao)
dc.subject.keywordE頻段,次諧波混頻器,正交調變器,超寬頻,Ku頻段,K頻段,降頻混頻器,低本地振盪功率應用,線性化,後失真線性化,電流注入,zh_TW
dc.subject.keywordE-band,sub-harmonic mixer,I/Q modulator,ultra wideband,Ku-band,K-band,down conversion mixer,linearity,post distortion,current bleeding,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201800362
dc.rights.note有償授權
dc.date.accepted2018-02-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved