請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
| dc.contributor.author | Yueh-Hsien Li | en |
| dc.contributor.author | 李岳憲 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:41:49Z | - |
| dc.date.available | 2023-01-01 | |
| dc.date.copyright | 2018-03-05 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-06 | |
| dc.identifier.citation | 1. 放流水標準,中華民國103年01月22日行政院環境保護署環署水字第 1030005842號令修正發布第二條條文,臺灣
2. Political Thoughts - the magazine,Price history of indium from 1992 to 2001 3. F.F. Zha, A.G. Fane and C.J.D. Fell, Instability Mechanism of Supported Liquid Membranes in Phenol Transport Process, Journal of Membrane Science, 1995 107(1) 59-74. 4. W.S. Winston Ho and T.K. Poddar, New Membrane Technology for Removal of Chromium from Waste Waters, Environmental Progress, 2001 20(1) 44-52. 5. 劉芳宇,支撐式液膜穩定性之評估,國立臺灣大學化學工程學研究所,碩士論文,2008,臺灣 6. F. Habashi, Principles of Extractive Metallurgy, 2. 1980, Gordon and Breach, New York. 7. M.J. Hudson, An Introduction to Some Aspects of Solvent Extraction Chemistry in Hydrometallurgy, Hydrometallurgy, 1982 9(2) 149-168. 8. J. Rydberg, M. Cox, C. Musikas and G.R. Chopin, Solvent Extraction Principles and Practice, 2004, Marcel Dekker, New York. 9. 王樹楷,銦冶金,2007,冶金工業出版社,中國大陸北京 10. B. Raghuraman, N. Tirmizi and J. Wiencek, Emulsion Liquid Membranes for Wastewater Treatment: Equilibrium Models for Some Typical Metal-Extractant Systems, Environmental Science and Technology, 1994 28(6) 1090-1098. 11. G.M. Ritcey and A.W. Ashbrook, Solvent Extraction – Principles and Applications to Process Metallury – Part 1, 1984, Elsevier Science Publishers, Amsterdam. 12. 戴猷元,秦煒,張瑾及單欣昌,有機物絡合萃取技術,2007,化學工業出版社,中國大陸北京 13. 陳昱瑋,以具分散反萃取相支撐式液膜分離回收釹(Nd3+)鏑(Dy3+)離子,國立臺灣大學化學工程學研究所,碩士論文,2013,臺灣 14. E. Chilyumova and J. Thoming, Dynamic Simulation of Rinsing and Regeneration Networks Based on High Pressure RO, Desalination, 2007 207(1) 45-58. 15. N. Saparia, A. Idrisb and N.H. Hamid, Total Removal of Heavy Metal from Mixed Plating Rinse Wastewater, Desalination, 1996 106(1) 419-422. 16. P.G. Priya, C.A. Basha, V. Ramamurthi and S.N. Begum, Recovery and Reuse of Ni(II) from Rinsewater of Electroplating Industries, Journal of Hazardous Materials, 2009 163(2) 899-909. 17. B.R. Reddy, D.N. Priya and J.R. Kumar, Solvent Extraction of Cadmium(II) from Sulphate Solutions Using TOPS 99, PC 88A, Cyanex 272 and Their Mixtures, Hydrometallurgy, 2004 74(3) 277-284. 18. M. Kul and U. Cetinkaya, Recovery of Nickel by Solvent Extraction from Electroplating Rinse Bath Solution, Solvent Extraction and Ion Exchange, 2010 28(2) 225-243. 19. G. Modolo, Synergistic Selective Extraction of Actinides(III) over Lanthanides from Nitric Acid Using New Aromatic Diorganyldithiophosphinic Acids and Neutral Organophosphorous Compounds, Solvent Extraction and Ion Exchange, 1999 17(1) 33-53. 20. M. Yi, W.Q. Wang, N.H. Liu and X.R. Mou, Investigation of the Regularity of Ternary Synergistic Extraction – Synergistic Extraction of Eu(3+) and Tb(3+) by the Ternary System of AAC Species Composed of HEHEHP-PMBP-TOA in Toluene, Journal of the Chinese Rare Earth Society, 1987 (2) 1-8. 21. H.B. Andrew, L.D. Mark and C. Renato, Incorporating Size Selectivity into Synergistic Solvent Extraction: A Review of Crown Ether-Containing System, Industrial and Engineering Chemistry Research, 2000 39(10) 3442-3464. 22. Y. Kitatsuji, Y. Meguro and Z. Yoshida, Synergistic Ion-Pair Extraction of Lanthanide(III) with Theoyltrifluoroacetone and Crown Ether into 1,2-dichloroethane, Solvent Extraction and Ion Exchange, 1995 13(2) 289-300. 23. Y. Masuda, Y.W. Zhang, C.H. Yan and B.G. Li, Studies on the Extraction and Separation of Lanthanide Ions with a Synergistic Extraction System Combined with 1,4,10,13-tetrathia-7,16-diazacyclooctadecane and Lauric Acid, Talanta, 1998 46(1) 203-213. 24. S. Akita, L.P. Castillo, S. Nii, K. Takahashi and H. Takeuchi, Separation of Co(II)/Ni(II) via Micellar-enhanced Ultrafiltration Using Organophosphrous Acid Extractant Solubilized by Nonionic Surfactant, Jouranl of Membrane Science, 1999 162(1) 111-117. 25. T. Takeshita, K. Watanabe, Y. Nakano and M. Watanabe, Solvent Extraction Separation of Cd(II) and Zn(II) with the Organophosphorus Extractant D2EHPA and the Aqueous Nitrogen-donor Ligand TPEN, Hydrometallury, 2003 70(1) 63-71. 26. D.D. Pereira, S.D.F. Rocha and M.B. Mansur, Recovery of Zinc Sulphate from Industrial Effluents by Liquid-liquid Extraction Using D2EHPA (di-2-ethylhexyl phosphoric acid), Separation and Purification Technology, 2007 53(1) 89-96. 27. 黃靖軒,以具分散反萃取相支撐式液膜分離並回收Ni2+-Zn2+-Al3+多成份金屬離子,國立臺灣大學化學工程學研究所,碩士論文,2011,臺灣 28. K. Dimitrov, V. Rollet, A. Saboni and S. Alexandrova, Recovery of Nickel from Sulphate Media by Batch Pertraction in a Rotating Film Contactor Using Cyanex 302 as a Carrier, Chemical Engineering and Processing: Process Intensification, 2008 47(9) 1562-1566. 29. G. Muthuraman, K. Palanivelu and T.T. Teng, Transport of Cationic Dye by Supported Liquid Membrane Using D2EHPA as the Carrier, Coloration Technology, 2010 126(2) 97-102. 30. F.J. Alguacil and M. Alonso, Separation of Zinc(II) from Cobalt(II) Solutions Using Supported Liquid Membrane with DP-8R (di(2-ethylhexyl) phosphoric acid) as a Carrier, Separation and Purification Technology, 2005 41(2) 179-184. 31. F. Valenzuela, C. Fonseca, C. Basualto, O. Correa, C. Tapia and J. Sapag, Removal of Copper Ions from a Waste Mine Water by a Liquid Emulsion Membrane Method, Minerals Engineering, 2005 18(1) 33-40. 32. R.M. Diamond, Amine Extraction Systems, in Solvent Extraction Chemistry, 1967, North-Holland, Amsterdam. 33. T. Kojima and H. Fukutomi, Extraction Equilibria of Hydrochloric Acid by Trioctylamine in Low-polar Organic Solvents, Bulletin of the Chemical Society of Japan, 1987 60(4) 1309-1320. 34. G.A. Yagodin, S.E. Kagan and V.V. Tarasov, Liquid Extraction Fundamentals (in Russian), 1981, Khimiya, Moscow. 35. C.J. King, Amine-Based Systems for Carboxylic-Acid Recovery, Chemtech, 1992 22(5) 285-291. 36. A.M. Eyal and R. Canari, pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants: Effect of pKa, Amine Basicity, and Diluent Properties, Industrial and Engineering Chemistry Research, 1995 34(5) 1789-1798. 37. J.R. Ferraro, Solvent Effects on the Infrared Spectra of Organophosphorus Compounds, Applied Spectroscopy, 1963 17(1) 12-14. 38. T.V. Healy, Synergistic in the Solvent Extraction of Di-, Tri- and Tetravalent Metal Ions – II: Synergistic Effects in So-called Inert Diluents, Journal of Inorganic and Nuclear Chemistry, 1961 19 328-339. 39. Y. Sasaki, Y. Sugo, S. Suzuki and T. Kimura, A Method for the Determination of Extraction Capacity and its Application to N,N,N,N-tetraalkylderivatives of Diglycolamide – monoamide/n-dodecane Media, Analytica Chimica Acta, 2005 543(1-2) 31-37. 40. M. Marinova, J. Albet, J. Molinier and G. Kyuchoukov, Specific Influence of the Modifier (1-Decanol) on the Extraction of Tartaric Acid by Different Extractants, Industrial and Engineering Chemistry Research, 2005 44(17) 6534-6538. 41. P.K. Parhi and K. Sarangi, Separation of Copper, Zinc, Cobalt and Nickel Ions by Supported Liquid Membrane Technique Using LIX 84I, TOPS-99 and Cyanex 272, Separation and Purification Technology, 2008 59(2) 169-174. 42. 李致諧,貴重金屬回收程序探討,國立臺灣大學化學工程學研究所,碩士論文,2007,臺灣 43. C. Zidi, R. Tayeb, M.B.S. Ali and M. Dhahbi, Liquid–liquid extraction and transport across supported liquid membrane of phenol using tributyl phosphate, Journal of Membrane Science, 2010 360(1-2) 334-340. 44. T. Sato, H. Watanabe and H. Nakamura, Extraction of Lactic, Tartaric, Succinic, and Citric Acids by Trioctylamine, Bunseki Kagaju, 1985 34(9) 559-563. 45. J.M. Coddington and M.J. Taylor, High Field 11B and 13C NMR Investigations of Aqueous Borate Solutions and Borate-Diol Complexes, Journal of Coordination Chemistry, 2009 20(1) 27-38. 46. P.K. Momii and N.H. Nachtrie, Nuclear Magnetic Resonance Study of Borate-Polyborate Equilibria in Aqueous Solution, Inorganic Chemistry, 1967 6(6) 1189-1192. 47. M. Bishop, N. Shahid, J. Yang and A.R. Barron, Determination of the Mode and Efficacy of the Cross-linking of Guar by Borate Using MAS 11B NMR of Borate Cross-linking Guar in Combination with Solution 11B NMR of Model System, Dalton Transactions, 2004 (17) 2621-2634. 48. C.G. Brown and B.R. Sanderson, Solvent-Extraction of Boron, Chemistry and Industry, 1980 (2) 68-73. 49. T. Kwon, M. Hirata, S. Sakuma, T. Hano and T. Yamagishi, Continuous Recovery of Boron from Wastewater with a Diol, Solvent Extraction and Ion Exchange, 2005 23(3) 391-400. 50. P. Ayers, A.W.L. Dudeney and F. Kahraman, Solvent-Extraction of Boron with 2-Ethyl-1,3-Hexanediol and 2-Chloro-4-(1,1,3,3-tetramethylbutyl)-6-methylol-phenol, Journal of Inorganic and Nuclear Chemistry, 1981 43(9) 2097-2100. 51. B. Egneus and L. Uppstrom, Extraction of Boric-Acid with Aliphatic 1,3-Diols and Other Chelating-Agents, Analytica Chimica Acta, 1973 66(2) 211-229. 52. M. Mastsumoto, K. Kondo, M. Hirata, S. Kokubu, T. Hano and T. Takada, Recovery of boric acid from wastewater by solvent extraction, Separation Science and Technology, 1997 32(5) 983-991. 53. M. Mulder, Basic Principles of Membrane Technology, 1997, Kluwer Academic, Boston. 54. R.W. Baker, Membrane Technology and Applications, 2004, Membrane Technology and Research, Inc. Menlo Park, California 55. R. Marr and A. Kopp, Liquid Membrane Technology – A Survey of Associated Phenomena, Transport Mechanisms and Models, Chemie Ingenieur Technik, 1980 52(5) 399-410. 56. G.M. Shean and K. Sollner, Carrier Mechanism in Movement of Ions across Porous and Liquid Ion Exchanger Membranes, Annals of the New York Academy of Sciences, 1966 137(A2) 759-776. 57. M.C. Porter, Handbook of Industrial Membrane Technology, 1988, Noyes Publications, New Jersey. 58. A.J.B. Kemperman, D. Bargeman, T. Vandenboomgaard and H. Starthmann, Stability of Supported Liquid Membrane: State of the Art. Separation Science and Technology, 1996 31(20) 2733-2762. 59. A. Surucu, V. Eyupoglu and O. Tutkun, Selective Separation of Cobalt and Nickel by Supported Liquid Membranes, Desalination, 2010 250(3) 1155-1156. 60. J.D. Bartsch and J. Way, Chemical Separations and Liquid Membranes, 1996 American Chemical Society, Washington DC. 61. Y. Shen, V. Obuseng, L. Gronberg and J.A. Jonsson, Liquid Membrane Enrichment for the Ion Chromatographic Determination of Carboxylic Acids in Soil Samples, Journal of Chromatography A, 1996 725(1) 189-197. 62. W.J. Ward III and W.L. Robb, Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide across a Liquid Film, Science, 1967 156(3781) 1481-1484. 63. R.W. Baker, M.E. Tuttle, D.J. Kelly and H.K. Lonsdale, Coupled Transport Membranes – 1 – Copper Separations, Journal of Membrane Science, 1977 2 213-233. 64. T. Rosenberg and W. Wilbrandt, Uphill Transport Induced by Counterflow, Journal of General Physiology, 1957 41(2) 289-296. 65. M.A. Chaudry, N. Bukhari, M. Mazhar and F. Tazeen, Vanadium(V) Ions Transport through Tri-n-octyl Amine Cyclohexane Supported Liquid Membranes, Separation and Purification Technology, 2007 54(2) 227-233. 66. N.N. Li and N.J. Somerset, Separating Hydrocarbons with Liquid Membranes, United State Patent Office, 3410794, 1968. 67. W.C. Griffin, Classification of Surface-active Agents by “HLB”, Journal of the Society of Cosmetic Chemists, 1949 311-326. 68. S.E. Kentish and G.W. Stevens, Innovations in Separation Technology for the Recycling and Re-use of Liquid Waste Streams, Chemical Engineering Journal, 2001 84 149-159. 69. K. Kondo and M. Matsumoto, Separation and Concentration of Indium(III) by an Emulsion Liquid Membrane Containing Diisostearylphosphoric Acid as a Mobile Carrier, Separation and Purification Technology, 1998 13(2) 109-115. 70. X.J. Yang, A.G. Fane and K. Soldenhoff, Comparison of Liquid Membrane Processes for Metal Separations: Permeability, Stability and Selectivity, Industrial and Engineering Chemistry Research, 2003 23(2) 392-403. 71. M.F.S. Roman, E. Bringas, R. Ibanez and I. Ortiz, Liquid Membrane Technology: Fundamentals and Review of its Applications, Journal of Chemical Technology and Biotechnology, 2010 85(1) 2-10. 72. J.A. Lopez, C. Mendiguchia, J.J. Pinto and C. Moreno, Liquid Membranes for Quantification and Separation of Trace Metals in Natural Waters, TrAC Trends in Analytical Chemistry, 2010 29(7) 645-653. 73. F.F. Zha, A.G. Fane and C.J.D. Fell, Instability Mechanisms of Supported Liquid Membranes in Phenol Transport Process, Journal of Membrane Science, 1995 107(1) 59-74. 74. K. Takahashi and H. Takeuchi, Transport of Copper through a Supported Liquid Membrane, Journal of Chemical Engineering of Japan, 1985 18(3) 205-211. 75. A.W. Adamson, Physical Chemistry of Surfaces, 5th edn, 1990, John Wiley and Sons, New York. 76. C. Fabiani, M. Merigiola, G. Scibona and A.M. Castagnola, Degradation of Supported Liquid Membranes under an Osmotic Pressure Gradient, Journal of Membrane Science, 1987 30(1) 97-104. 77. P. Deblay, S. Delepine and M. Minier, Selection of Organic Phase for Optimal Stability and Efficiency of Flat-sheet Supported Liquid Membranes, Separation Science and Technology, 1991 26(1) 97-116. 78. P.R. Danesi, L. Reichley-Yinger and P.G. Rickert, Lifetime of Supported Liquid Membranes: the Influence of Interfacial Properties, Chemical Composition and Water Transport on the Longterm Stability of the Membranes, Journal of Membrane Science, 1987 31(2) 117-145. 79. S. Belfer, S. Binman, Y. Lati and S. Zolotov, Immobilized Extractants: Selective Transport of Magnesium and Calcium from a Mixed Chloride Solution via a Hollow Fiber Module, Journal of Applied Polymer Science, 1990 40(11) 2073-2085. 80. M.I.G.S. Almeida, R.W. Cattrall and S.D. Kolev, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), Journal of Membrane Science, 2012 415 9-23. 81. R.W. Cattrall, Chemical sensors, in: R.G. Compton (Ed.), Oxford Chemistry Primers, 1997, vol. 52, Oxford University Press, New York. 82. L.D. Nghiem, P. Mornane, I.D. Potter, J.M. Perera, R.W. Cattrall and S.D. Kolev, Extraction and Transport of Metal Ions and Small Organic Compounds Using Polymer Inclusion Membranes (PIMs), Journal of Membrane Science, 2006 281(1-2) 7-41. 83. A. Gherrou, H. Kerdjoudj, R. Molinari, P. Seta and E. Drioli, Fixed Sites Plasticized Cellulose Triacetate Membranes Containing Crown Ethers for Silver(I), Copper(II) and Gold(III) Ions Transport, Journal of Membrane Science, 2004 228(2) 149–157. 84. P.J. Flory, Principles of Polymer Chemistry, 1953, Cornell University Press, Ithaca. 85. W. Walkowiak, R.A. Bartsch, C. Kozlowski, J. Gega, W.A. Charewicz and B. Amiri-Eliasi, Separation and Removal of Metal Ionic Species by Polymer Inclusion Membranes, Journal of Radioanalytical and Nuclear Chemistry, 2000 246(3) 643–650. 86. J.C. Aguilar, E.R.D.S. Miguel, J.D. Gyves, R.A. Bartsch and M. Kim, Design, Synthesis and Evaluation of Diazadibenzocrown Ethers as Pb2+ Extractants and Carriers in Plasticized Cellulose Triacetate Membranes, Talanta, 2001 54 (6) 1195–1204. 87. J.K. Sears and J.R. Darby, Technology of Plasticizers, 1982, John Wiley & Sons, New York. 88. Y.M. Scindia, A.K. Pandey and A.V.R. Reddy, Coupled-Diffusion Transport of Cr(VI) across Anion-Exchange Membranes Prepared by Physical and Chemical Immobilization Methods, Journal of Membrane Science, 2005 249 (1-2) 143–152. 89. C.A. Kozlowski and W. Walkowiak, Transport of Cr(VI), Zn(II), and Cd(II) Ions across Polymer Inclusion Membranes with Tridecyl(pyridine) Oxide and Tri-n-octylamine, Separation Science and Technology, 2004 39 (13) 3127–3141. 90. M. Sugiura and M. Kikkawa, Effect of Plasticizer on Carrier-Mediated Transport of Zinc Ion through Cellulose Triacetate Membranes, Separation Science and Technology, 1987 22 (11) 2263–2268. 91. Y.Y.N. Bonggotgetsakul, M. Ashokkumar, R.W. Cattrall and S.D. Kolev, The Use of Sonication to Increase Extraction Rate in Polymer Inclusion Membranes: An Application to the Extraction of Gold(III), Journal of Membrane Science, 2010 365(1-2) 242–247. 92. Y. Cho, C. Xu, R.W. Cattrall and S.D. Kolev, A Polymer Inclusion Membrane for Extracting Thiocyanate from Weakly Alkaline Solutions, Journal of Membrane Science, 2011 367(1-2) 85–90. 93. Y.M. Scindia, A.K. Pandey and A.V.R. Reddy, Coupled-Diffusion Transport of Cr(VI) across Anion-Exchange Membranes Prepared by Physical and Chemical Immobilization Methods, Journal of Membrane Science, 2005 249(1-2) 143–152. 94. C.A. Kozlowski and W. Walkowiak, Applicability of Liquid Membranes in Chromium(VI) Transport with Amines as Ion Carriers, Journal of Membrane Science, 2005 266(1-2) 143–150. 95. A. Tor, G. Arslan, H. Muslu, A. Celiktas, Y. Cengeloglu and M. Ersoz, Facilitated Transport of Cr(III) through Polymer Inclusion Membrane with Di(2-ethyl- hexyl)phosphoric acid (DEHPA), Journal of Membrane Science, 2009 329(1-2) 169–174. 96. O. Arous, M. Amara and H. Kerdjoudj, Selective Transport of Metal Ions Using Polymer Inclusion Membranes Containing Crown Ethers and Cryptands, The Arabian Journal for Science and Engineering, 2010 35 79–93. 97. S.A. Ansari, P.K. Mohapatra and V.K. Manchanda, Cation Transport across Plasticized Polymeric Membranes Containing N,N,N’,N’-Tetraoctyl-3-oxa- pentanediamide(TODGA) as the Carrier, Desalination, 2010 262(1-3) 196–201. 98. J.S. Gardner, J.O. Walker and J.D. Lamb, Permeability and Durability Effects of Cellulose Polymer Variation in Polymer Inclusion Membranes, Journal of Membrane Science, 2004 229(1-2) 87-93. 99. P.R. Danesi, E.P. Horwitz, G.F. Vandegrift and R. Chiarzia, Mass Transfer Rate through Liquid Membranes – Interfacial Chemical Reactions and Diffusion as Simultaneous Permeability Controlling Factors, Separation Science and Technology, 1981 16(2) 201-211. 100. P.R. Danesi, Separation of Metal Species by Supported Liquid Membranes, Separation Science and Technology, 1984 19(11) 857-894. 101. A. Casadella, O. Schaetzle, K. Nijmeijer and K. Loos, Polymer Inclusion Membranes (PIM) for the Recovery of Potassium in the Presence of Competitive Cations, Polymers, 2016 8(3) 76. 102. M. Teramoto, A. Kariya, T. Yonehara, M. Tokungag, N. Ohnishi, H. Matsuyama and Y. Miyake, Separation of Gallium and Indium by Supported Liquid Membranes Containing 2-Bromodecanoic Acid as Carrier: Design of Supported Liquid Membrane Module Based on Batch Permeation Experiments, Hydrometallurgy, 1993 33(1-2) 1-15. 103. S. Virolainen, D. Ibana and E. Paatero, Recovery of Indium from Indium Tin Oxide by Solvent Extraction, Hydrometallurgy, 2011 107(1-2) 56-61. 104. M.I. Vazquez, V. Romero, C. Fontas, E. Antico and J. Benavente, Polymer Inclusion Membranes (PIMs) with the Ionic Liquid (IL) Aliquat 336 as Extractant: Effect of Base Polymer and IL Concentration on Their Physical-Chemical and Elastic Characteristics, Journal of Membrane Science, 2014 455 312-319. 105. E. de San Miguel, M. Monroy-Barreto, J.C. Aguilar, A.L. Ocampo and J. de Gyves, Structural Effects on Metal Ion Migration across Polymer Inclusion Membranes: Dependence of Membrane Properties and Transport Profiles on the Weight and Volume Fractions of the Components, 2011 379(1-2) 416-425. 106. C. Fontas, R. Tayeb, M. Dhahbi, E. Gaudichet, F. Thominette, P. Roy, K. Steenkeste, M.P. Fontaine-Aupart, S. Tingry, E. Tronel-Peyroz and P. Seta, Polymer Inclusion Membranes: The Concept of Fixed Sites Membrane Revised, Journal of Membrane Science, 2007 290(1-2) 62-72. 107. 張逸惟,pH值對具分散反萃取相支撐式液膜分離回收之影響,國立臺灣大學化學工程學研究所,碩士論文,2015,臺灣 108. M.T. Coll, A. Fortuny and A.M. Sastre, Boron reduction by supported liquid membranes using ALiCY and ALiDEC ionic liquids as carriers, Chemical Engineering Research and Design, 2014 92(4) 758-763. 109. Y. O’Bryan, R.W. Cattrall, Y.B. Truong, I.L. Kyratzis and S.D. Kolev, The Use of Poly(vinylidenefluoride-co-hexafluoropropylene) for the Preparation of Polymer Inclusion Membranes. Application to the Extraction of Thiocyanate, Journal of Membrane Science, 2016 510 481-488. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70069 | - |
| dc.description.abstract | 本研究主要致力於開發具有萃取能力之高分子萃取膜(Polymer Inclusion Membranes, PIM),應用於離子回收程序上,並且針對它的材料穩定性進行探討。高分子萃取膜,為近年來廣為發展的膜分離技術,藉由將對目標物有反應性之萃取劑於製膜過程中添加入製程中,製備出具有萃取性的薄膜,且因為固態薄膜,使得萃取劑不會因為與進料相的接觸而流失,造成透過效率下降,甚至是汙染水相溶液,被視為是未來能夠作為離子回收程序的選擇之一。
研究中以商業化Di-(2-ethylhexyl) phosphate acid (D2EHPA)作為萃取劑,製備具有銦萃取性之高分子膜,以鹽酸作為反萃取溶液,檢視高分子萃取膜於強酸接觸之下,銦的透過效率以及材料穩定性。研究結果顯示,隨著操作的進行,透過係數呈現下降的趨勢;經由傅立葉轉換紅外線光譜儀的鑑定,發現在經過強酸反萃取相溶液的接觸之後,薄膜中乙醯基團之特徵吸收峰減弱,同時羥基之特徵吸收峰增強,顯示三醋酸纖維素高分子因強酸的接觸造成水解反應(Hydrolysis)的發生,並且在掃描式電子顯微鏡觀察結果中也發現,經過酸液接觸的膜表面呈現較為不平整。進一步地利用X射線光電子能譜儀分析薄膜中含磷成份,發現接觸酸液前後,膜內磷的含量由6.1 wt%降至2.0 wt%,顯示萃取劑與塑化劑等含磷有機相成份的流失。 本研究提出結合具分散反萃取相之操作程序(Polymer Inclusion Membranes with Strip Dispersion, PIMSD),利用含有萃取劑之有機相,將強酸反萃取溶液分散其中,希望藉此達到保護膜材免於直接長時間接觸酸液。當置入0.6 M D2EHPA作為有機相,於操作20小時內皆無觀察到透過係數隨時間改變之現象,且進料相pH值並未觀察到顯著的變化;但當進行更長時間的試驗,進料相pH值則仍會下降,顯示氫離子仍會因水解而透過至進料相,形成材料穩定性問題。 在嘗試結合具分散反萃取相的方式之後,本研究進一步地結合疏水性聚丙烯多孔膜的程序,改善穩定性的問題。由於聚丙烯 (Polypropylene, PP) 具有絕佳的抗化性,使得擁有良好的材料穩定性。於具分散反萃相高分子萃取膜程序中,置入聚丙烯薄膜於高分子萃取膜與具分散反萃取液之間,因本身疏水性使得水相的強酸液滴不會接觸到高分子萃取膜,經過連續5天的操作,進料相pH值並未觀察到明顯的改變,銦透過係數為1.9x10^-4 m/min,成功地達到改善材料穩定性的目的。 本研究中藉由結合具分散反萃取相以及聚丙烯薄膜方式達到改善穩定性的目的,因此,對於透過係數與質傳阻力之間的關係進行討論。利用膜分離程序中所得的銦透過係數,進行質傳阻力的探討。從結果中發現,高分子萃取膜於成膜過程當中,將會相分離成油相組成含量較多(Polymer-poor phase或Gel phase)以及高分子含量較多(Polymer-rich phase)的區域;經由分析高分子萃取膜與支撐式液膜兩系統之間的質傳阻力,其關係為Rgel=2.3Rliq' ,這也說明高分子萃取膜其透過係數並未因為是固態膜而降低至一個數量級。 另外,本研究利用具分散反萃取相支撐式液膜(Supported Liquid Membranes with Strip Dispersion, SLMSD)的技術,進行硼回收的長時間穩定性操作試驗,由於目前商業化硼萃取劑中,以2,2,4-Trimethyl-1,3-pentanediol (TMPD)萃取效果最佳,但由於為二醇類小分子,存在水溶性的疑慮,因此藉由較長時間的試驗,測試操作穩定性。於較大規模(膜面積為8.1 m2)支撐式液膜系統長時間試驗中,結果顯示,在操作12天之後,透過係數降為原先的1/6,其原因為TMPD本身水溶性所造成,使得有機相中萃取劑含量隨操作而減少。本研究嘗試將TMPD萃取劑於製膜程序中,添加進入鑄膜液中,製備出具硼萃取性之高分子萃取膜。由於TMPD萃取劑藉由膜內TBEP塑化劑使其溶解於膜內,成為固態膜,因此理論上較不會溶出進入進料側。當經過較長時間試驗時,發現反萃取相之氫氧根離子會透過至進料相,使進料相pH值上升,顯示高分子萃取膜於接觸強鹼反萃取液的情況下,發生水解反應造成材料穩定性的問題。進一步地利用結合聚丙烯膜的程序改善回收硼的系統,經過連續15天的操作,進料相pH值並未觀察到明顯的改變,皆維持於2.65左右。 | zh_TW |
| dc.description.abstract | The major aim of the present work is to develop the polymer inclusion membranes (PIM), and evaluate their process stability. PIM is formed by casting a solution containing an extractant, a plasticizer and a base polymer. Stability has been the main advantage attributed to PIM in comparison with other liquid membranes. We used di-(2-ethylhexyl) phosphate acid (D2EHPA) as extractant and prepared CTA-PIM membranes to recover indium, which hydrochloric acid solution as stripping phase, and then to evaluate the stability. When 5 M HCl as stripping phase, the indium permeability was 2.3×10^-4 m/min, but it decreased with time, by observation and analysis of Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM), the membrane surface was hydrolyzed by acidic stripping solution, and the content of phosphorous atoms within membrane decreased.
Combination with strip dispersion, called polymer inclusion membranes with strip dispersion (PIMSD), there was no significant variation in feed pH and indium permeability maintained 2.5×10^-4 m/min during 20 hours operation. For long-term operation, the feed pH also declined from 1.00 to 0.67, it means that the acid-catalyzed hydrolysis still occurs. We proposed an operation scheme which combined PIMSD and hydrophobic microporous polypropylene (PP) membrane, by using PP membrane to protect CTA-PIM membrane. As a result, this scheme could maintain the feed pH and indium permeability during 5 days. In addition, the boron long-term stability was examed by supported liquid membranes with strip dispersion (SLMSD) technique, which 2,2,4-trimethyl-1,3-pentanediol (TMPD) as boron extractant. TMPD is a good commercial extractant for boron extraction, but it is slightly soluble in water, hence the long-term operation stability in SLMSD would be evaluated. For long-term operation, the permeability decreased from 3.1×10^-5 m/min to 4.9×10^-6 m/min after 12 days operation, and then we re-added 0.1 M TMPD extractant to the original organic solution, the boron permeability increased from 4.9×10^-6 m/min to 1.5×10^-5 m/min, it mean that the TMPD extractant was loss out of the organic phase. In the next, we proposed a PIM separation process to recover boron. It was observed that, the feed pH value would increase sharply after about 2 hours, we thought it caused by hydrolysis of CTA polymer, this behavior revealed the material stability of PIM membrane, hence, we proposed an operation scheme which combined PIMSD with PP membrane to improve the stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:41:49Z (GMT). No. of bitstreams: 1 ntu-107-D01524004-1.pdf: 4643153 bytes, checksum: 0ec750737f77feaeaa38cc85df0bd002 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VIII 表目錄 XVIII 第一章 緒論 1 第二章 文獻回顧 6 2-1 溶劑萃取 6 2-1-1 溶劑萃取之原理 6 2-1-2 物理萃取 8 2-1-3 化學萃取 8 2-1-3-1 萃取劑 8 2-1-3-2 稀釋劑 14 2-1-3-3 修飾劑 15 2-1-4液液萃取應用 18 2-1-5萃取平衡因子探討 20 2-1-5-1 萃取劑的影響 20 2-1-5-2 稀釋劑的影響 21 2-1-5-3 修飾劑的影響 22 2-1-5-4 進料水相溶液pH值的影響 22 2-1-5-5 操作溫度的影響 23 2-1-6硼的萃取 24 2-2液膜分離技術 26 2-2-1 液膜的工作原理與傳遞機制 28 2-2-1-1簡單擴散傳送(Diffusive transport) 28 2-2-1-2載體輔助傳送(Carrier mediated transport) 29 2-2-2液膜的型式 32 2-2-2-1非支撐式液膜(Non-supported liquid membrane) 32 2-2-2-2支撐式液膜(Supported liquid membrane) 35 2-2-2-3具分散反萃取相支撐式液膜(Supported liquid membrane with strip dispersion, SLMSD) 40 2-3高分子萃取膜(Polymer Inclusion Membranes)分離技術 42 2-3-1高分子萃取膜組成 44 2-3-1-1高分子 44 2-3-1-2 萃取劑 44 2-3-1-3 塑化劑 45 2-3-2 高分子萃取膜之穩定性 49 第三章 實驗理論 54 3-1萃取平衡 54 3-2支撐式液膜傳送速率的推導及測定 55 第四章 實驗方法 61 4-1設備與儀器 61 4-2實驗藥品 64 4-3實驗步驟 66 4-3-1具分散反萃取相支撐式液膜 66 4-3-1高分子萃取膜製備 68 4-3-2利用膜透裝置進行高分子萃取膜測試 69 4-3-3樣品濃度檢測 70 4-3-4膜樣品表面結構觀察 71 4-3-5膜樣品化學官能基鑑定 71 4-3-6膜樣品表面元素鑑定 71 4-3-7水解行為之膜重損失鑑定 72 第五章 結果與討論 73 5-1利用高分子萃取膜(Polymer Inclusion Membranes, PIM)回收銦離子 74 5-1-1以較高濃度(5 M HCl)作為反萃取相溶液 74 5-1-2以較低濃度(1 M HCl)作為反萃取相溶液 87 5-2利用具分散反萃取相高分子萃取膜(Polymer Inclusion Membranes with Strip Dispersion, PIMSD)回收銦離子 95 5-3結合疏水性聚丙烯(Polypropylene, PP)薄膜改善操作穩定性 109 5-4 系統質傳阻力與目標物透過係數之間的探討 115 5-5利用具分散反萃取相支撐式液膜技術回收硼 130 5-6具分散反萃取相支撐式液膜回收硼之長時間操作穩定性評估 137 5-7評估合成ALiCY(Ionic liquid)作為萃取硼之可能性 142 5-8利用含TMPD萃取劑之高分子萃取膜進行硼的回收 151 5-9利用具分散反萃取相高分子萃取膜(Polymer Inclusion Membranes with Strip Dispersion, PIMSD)回收硼 156 第六章 結論 167 第七章 未來展望 170 參考文獻 171 附錄1、符號與縮寫對照表 184 | |
| dc.language.iso | zh-TW | |
| dc.subject | 具分散反萃取相支撐式液膜 | zh_TW |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 水解反應 | zh_TW |
| dc.subject | 高分子萃取膜 | zh_TW |
| dc.subject | 質傳阻力 | zh_TW |
| dc.subject | Supported liquid membranes with strip dispersion (SLMSD) | en |
| dc.subject | Hydrolysis | en |
| dc.subject | Stability | en |
| dc.subject | Boron recovery | en |
| dc.subject | Indium recovery | en |
| dc.subject | Polymer inclusion membranes with strip dispersion (PIMSD) | en |
| dc.subject | Polymer inclusion membranes (PIM) | en |
| dc.title | 製備高分子萃取膜回收金屬離子並評估其操作穩定性 | zh_TW |
| dc.title | Recovery of Metal Ions by Polymer Inclusion Membranes and Evaluation on the Process Stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝學真(Hsyue-Jen Hsieh),康敦彥(Dun-Yen Kang),賴君義(Juin-Yih Lai),李魁然(Kueir-Rarn Lee),林芳慶(Fung-Ching Lin) | |
| dc.subject.keyword | 高分子萃取膜,穩定性,水解反應,具分散反萃取相支撐式液膜,質傳阻力, | zh_TW |
| dc.subject.keyword | Polymer inclusion membranes (PIM),Supported liquid membranes with strip dispersion (SLMSD),Polymer inclusion membranes with strip dispersion (PIMSD),Indium recovery,Boron recovery,Stability,Hydrolysis, | en |
| dc.relation.page | 188 | |
| dc.identifier.doi | 10.6342/NTU201800371 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
