請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李文宗 | zh_TW |
| dc.contributor.author | 張耀堃 | zh_TW |
| dc.contributor.author | Yao-Kun Chang | en |
| dc.date.accessioned | 2021-06-17T03:40:28Z | - |
| dc.date.available | 2023-12-07 | - |
| dc.date.copyright | 2018-03-29 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Tsiatis AA, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Statistics in Medicine, 2008; 27: 4658–4677
2. Moore KL, Neugebauer R, Valappil T, Van Der Laan MJ. Robust extraction of covariate information to improve estimation efficiency in randomized trials. Statistics in Medicine, 2011; 30: 2389-2408. 3. Shen C, Li X, Li L. Inverse probability weighting for covariate adjustment in randomized studies. Statistics in Medicine, 2014; 33: 555-568. 4. Lesaffre E, Senn S. A note on non-parametric ANCOVA for covariate adjustment in randomized clinical trials. Statistics in Medicine, 2003; 22: 3583–3596. 5. Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Statistics in Medicine, 2002; 21: 2917–2930. 6. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. British Medical Journal, 2013; 346: e7586.19 7. Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine, 2006; 25: 2084-2106. 8. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983; 70: 41–55. 9. Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 1984; 79: 516–524. 10. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 2011; 46: 399–424. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70044 | - |
| dc.description.abstract | 臨床試驗中研究者有時會進行變數調整以提升研究檢定力。然而這讓研究者可以挑選基線變數進行調整以尋求有利實驗治療的結果。這樣會令人質疑變數調整的客觀性。機率倒數權重法可以改善這問題。但我們發現,當臨床試驗的平均治療結果越遠離0時,機率倒數權重法的表現會越差。我們提出傾向分數法。此法保有機率倒數權重法的客觀性優點,而無其缺點。我們進行電腦模擬探討此法之統計性質。我們認為傾向分數法值得推薦於臨床試驗中使用,如此可保有客觀性,又能提高研究之檢定力。 | zh_TW |
| dc.description.abstract | Researchers sometimes conduct covariate adjustments in clinical trials to improve study power. However, this allows researchers to cherry-pick baseline covariates in their analysis in order to seek favorable results of the experimental treatment. This casts doubts on the objectivity of covariate adjustments. The inverse probability weighting method can mitigate the problem. But we found that when the average treatment results of the trial are more away from zero, the performances of the inverse probability weighting method will become poorer. We propose a propensity score method. This method retains the advantage of objectivity in the inverse probability weighting method but without its shortcoming. We conduct computer simulations to investigate its statistical properties. The propensity score method is worth recommending for use in clinical trials to preserve objectivity and enhance study power. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:40:28Z (GMT). No. of bitstreams: 1 ntu-107-R02849030-1.pdf: 1336843 bytes, checksum: 6f53e506706b80fe12929d490a932bcd (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 表目錄 vi 第一章 前言 1 第二章 方法 3 第三章 模擬研究 6 模擬設定 6 模擬結果 7 第四章 討論 10 參考文獻 12 表例 14 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共變異分析 | zh_TW |
| dc.subject | 機率倒數權重 | zh_TW |
| dc.subject | 傾向分數 | zh_TW |
| dc.subject | 機率倒數權重 | zh_TW |
| dc.subject | 客觀性 | zh_TW |
| dc.subject | 傾向分數 | zh_TW |
| dc.subject | 共變異分析 | zh_TW |
| dc.subject | 客觀性 | zh_TW |
| dc.subject | 臨床試驗 | zh_TW |
| dc.subject | 臨床試驗 | zh_TW |
| dc.subject | propensity score | en |
| dc.subject | clinical trials | en |
| dc.subject | analysis of covariance | en |
| dc.subject | inverse probability weighting | en |
| dc.subject | objectivity | en |
| dc.subject | propensity score | en |
| dc.subject | clinical trials | en |
| dc.subject | analysis of covariance | en |
| dc.subject | inverse probability weighting | en |
| dc.subject | objectivity | en |
| dc.title | 傾向分數分層法應用在隨機對照試驗上 | zh_TW |
| dc.title | Propensity Score Stratification in Randomized Controlled Trials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 杜裕康;廖勇柏 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 臨床試驗,共變異分析,機率倒數權重,客觀性,傾向分數, | zh_TW |
| dc.subject.keyword | clinical trials,analysis of covariance,inverse probability weighting,objectivity,propensity score, | en |
| dc.relation.page | 19 | - |
| dc.identifier.doi | 10.6342/NTU201800412 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-02-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
