請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70042
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱智賢 | |
dc.contributor.author | En-Chia Yang | en |
dc.contributor.author | 楊恩加 | zh_TW |
dc.date.accessioned | 2021-06-17T03:40:22Z | - |
dc.date.available | 2023-03-05 | |
dc.date.copyright | 2018-03-05 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-07 | |
dc.identifier.citation | Amacher, D. E., and N. Chalasani. 2014. Drug-induced hepatic steatosis. Semin Liver Dis 34(2):205-214. doi: 10.1055/s-0034-1375960
Andrade, J. M., A. F. Paraiso, M. V. de Oliveira, A. M. Martins, J. F. Neto, A. L. Guimaraes, A. M. de Paula, M. Qureshi, and S. H. Santos. 2014. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30(7-8):915-919. doi: 10.1016/j.nut.2013.11.016 Ardi, V. C., P. E. Van den Steen, G. Opdenakker, B. Schweighofer, E. I. Deryugina, and J. P. Quigley. 2009. Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J. Biol. Chem. 284(38):25854-25866. doi: 10.1074/jbc.M109.033472 Ardi, V. C., T. A. Kupriyanova, E. I. Deryugina, and J. P. Quigley. 2007. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 104(51):20262-20267. Asselah, T., Rubbia-Brandt, L., Marcellin, P., and Negro, F. 2006. Steatosis in chronic hepatitis C: why does it really matter? Gut. 55(1):123-130. Auguet, T., A. Berlanga, E. Guiu-Jurado, S. Martinez, J. A. Porras, G. Aragones, F. Sabench, M. Hernandez, C. Aguilar, J. J. Sirvent, D. Del Castillo, and C. Richart. 2014. Altered fatty acid metabolism-related gene expression in liver from morbidly obese women with non-alcoholic fatty liver disease. Int. J. Mol. Sci. 15(12):22173-22187. doi: 10.3390/ijms151222173 Azzout, B., Bois-Joyeux, B., Chanez, M., and Peret, J. 1987. Development of gluconeogenesis from various precursors in isolated rat hepatocytes during starvation or after feeding a high protein, carbohydrate-free diet. J. Nutr. 117(1): 164-169. Bataller, R., and Brenner, D.A. 2005. Liver fibrosis. J. Clin. Invest.115(2):209-218. Bechmann, L.P., Hannivoort, R.A., Gerken, G., Hotamisligil, G.S., Trauner, M., and Canbay, A. 2012. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 56(4):952-964. doi: 10.1016/j.jhep.2011.08.025 Boltjes, A., Movita, D., Boonstra, A., and Woltman, A.M. 2014. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J. Hepatol. 61(3):660-671. doi: 10.1016/j.jhep.2014.04.026 Buzzetti, E., M. Pinzani, and E. A. Tsochatzis. 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038-1048. doi: 10.1016/j.metabol.2015.12.012 Cao, Y., Y. Xue, L. Xue, X. Jiang, X. Wang, Z. Zhang, J. Yang, J. Lu, C. Zhang, W. Wang, and G. Ning. 2013. Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation. J. Hepatol. 59(6):1299-1306. doi: 10.1016/j.jhep.2013.07.011 Cauwe, B., and G. Opdenakker. 2010. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 45(5):351-423. doi: 10.3109/10409238.2010.501783 Cauwe, B., P. E. Van den Steen, and G. Opdenakker. 2007. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 42(3):113-185. doi: 10.1080/10409230701340019 Charlton-Menys, V., and Durrington, P.N. 2008. Human cholesterol metabolism and therapeutic molecules. Exp. Physiol. 93(1):27-42. Cheung, O., and Sanyal, A.J. 2008. Abnormalities of lipid metabolism in nonalcoholic fatty liver disease. Seminars in Liver Disease 28, 351-359. doi: 10.1038/nrm3313 Choi, J. H., K. H. Nam, J. Kim, M. W. Baek, J. E. Park, H. Y. Park, H. J. Kwon, O. S. Kwon, D. Y. Kim, and G. T. Oh. 2005. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25(11):2404-2409. doi: 10.1161/01.ATV.0000184758.07257.88 Chou, C. H., Y. C. Chen, M. C. Hsu, W. L. Tsai, C. Y. Chang, and C. H. Chiu. 2012. Effect of silymarin on lipid and alcohol metabolism in mice following long-term alcohol consumption. J. Food Biochem. 36(3):369-377. doi: 10.1111/j.1745-4514.2011.00543.x Clement, S., S. Pascarella, and F. Negro. 2009. Hepatitis C virus infection: molecular pathways to steatosis, insulin resistance and oxidative stress. Viruses 1(2):126-143. doi: 10.3390/v1020126 Consolo, M., A. Amoroso, D. A. Spandidos, and M. C. Mazzarino,. 2009. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). Int. J. Mol. Med. 24(02):143-152 doi: 10.3892/ijmm_00000217 Cori, G.T., and C.F. Cori. 1952. Glucose-6-phosphatase of the liver in glycogen storage disease. J. Biol. Chem. 199(2):661-667. De Leeuw, A. M., A. Brouwer, and D. L. Knook. 1990. Sinusoidal Endothelial Cells of the Liver- Fine Structure and Function in Relation to Age. J. Electron Microsc. Tech. 14:218-236. Doege, H., R. A. Baillie, A. M. Ortegon, B. Tsang, Q. Wu, S. Punreddy, D. Hirsch, N. Watson, R. E. Gimeno, and A. Stahl. 2006. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130(4):1245-1258. doi: 10.1053/j.gastro.2006.02.006 Donnelly, K. L., C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115(5):1343-1351. doi: 10.1172/jci23621 Dufour, A., N. S. Sampson, S. Zucker, and J. Cao. 2008. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol. 217(3):643-651. doi: 10.1002/jcp.21535 Fan, C. Y., J. Pan, R. Chu, D. Lee, K. D. Kluckman, N. Usuda, I. Singh, A. V. Yeldandi, M. S. Rao, N. Maeda, and J. K. Reddy. 1996. Hepatocellular and Hepatic Peroxisomal Alterations in Mice with a Disrupted Peroxisomal Fatty Acyl-coenzyme A Oxidase Gene. J. Biol. Chem. 271(40):24698-24710. Ferre, P., and F. Foufelle. 2010. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab. 12:83-92. doi: 10.1111/j.1463-1326.2010.01275.x. Fischer, M., M. You, M. Matsumoto, and D. W. Crabb. 2003. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J. Biol. Chem. 278(30):27997-28004. doi: 10.1074/jbc.M302140200 Gieling, R. G., K. Wallace, and Y. P. Han. 2009. Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol 296(6):G1324-1331. doi: 10.1152/ajpgi.90564.2008 Goldberg, I. J., and H. N. Ginsberg. 2006. Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology 130(4):1343-1346. doi: 10.1053/j.gastro.2006.02.040 Hanson, R.W., and L. Reshef. 1997. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66:581-611. Hernandez-Anzaldo, S., V. Brglez, B. Hemmeryckx, D. Leung, J. G. Filep, J. E. Vance, D. E. Vance, Z. Kassiri, R. H. Lijnen, G. Lambeau, and C. Fernandez-Patron. 2016. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J. Am. Heart. Assoc. 5(10). doi: 10.1161/JAHA.116.004228 Horton, J. D., J. L. Goldstein, and M. S. Brown. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109(9):1125-1131. doi: 10.1172/jci0215593 Hsu, M. C., M. E. Wang, Y. F. Jiang, H. C. Liu, Y. C. Chen, and C. H. Chiu. 2017. Long-term feeding of high-fat plus high-fructose diet induces isolated impaired glucose tolerance and skeletal muscle insulin resistance in miniature pigs. Diabetol. Metab. Syndr. 9:81. doi: 10.1186/s13098-017-0281-6 Hsu, W. H., T. H. Chen, B. H. Lee, Y. W. Hsu, and T. M. Pan. 2014. Monascin and ankaflavin act as natural AMPK activators with PPARalpha agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 64:94-103. doi: 10.1016/j.fct.2013.11.015 Iimuro, Y., and D. A. Brenner. 2008. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm. Res. 25(2):249-258. doi: 10.1007/s11095-007-9311-7 Ishibashi, H., M. Nakamura, A. Komori, K. Migita, and S. Shimoda. 2009. Liver architecture, cell function, and disease. Semin. Immunopathol. 31(3):399-409. Itagaki, H., K. Shimizu, S. Morikawa, K. Ogawa, and T. Ezaki. 2013. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int. J. Clin. Exp. Pathol. 6(12):2683-2696. Jensen-Urstad, A. P., and C. F. Semenkovich. 2012. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim. Biophys. Acta.1821(5):747-753. doi: 10.1016/j.bbalip.2011.09.017 Ji, C., C. Chan, and N. Kaplowitz. 2006. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J. Hepatol. 45(5):717-724. doi: 10.1016/j.jhep.2006.05.009 Kang, L., W. H. Mayes, F. D. James, D. P. Bracy, and D. H. Wasserman. 2014. Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Diabetologia 57:603-613. doi: 10.1007/s00125-013-3128-1) Kerner, J., and C. Hoppel, 2000. Fatty acid import into mitochondria. Biochim. Biophys. Acta. 1486:1-17. Kim, K.H. 1997. Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition 17:77-99. Kolios, G., V. Valatas, and E. Kouroumalis. 2006. Role of Kupffer cells in the pathogenesis of liver disease. World J. Gastroenterol. 12(46):7413-7420. Koonen, D. P., R. L. Jacobs, M. Febbraio, M. E. Young, C. L. Soltys, H. Ong, D. E. Vance, and J. R. Dyck. 2007. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 56(12):2863-2871. doi: 10.2337/db07-0907 Kyriakides, T. R., D. Wulsin, E. A. Skokos, P. Fleckman, A. Pirrone, J. M. Shipley, R. M. Senior, and P. Bornstein. 2009. Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol. 28(2):65-73. doi: 10.1016/j.matbio.2009.01.001 Lardone, M. C., P. Castillo, R. Valdevenito, M. Ebensperger, A. M. Ronco, R. Pommer, A. Piottante, and A. Castro. 2010. P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. Int. J. Androl. 33(4):650-660. doi: 10.1111/j.1365-2605.2009.01002.x Li, T., and J. Y. Chiang. 2013. Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 45(1):145-155. doi: 10.3109/03602532.2012.740048 Li, Y., K. Wong, A. Giles, J. Jiang, J. W. Lee, A. C. Adams, A. Kharitonenkov, Q. Yang, B. Gao, L. Guarente, and M. Zang. 2014. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 146(2):539-549 e537. doi: 10.1053/j.gastro.2013.10.059 Louvet, A., and P. Mathurin. 2015. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat. Rev. Gastroenterol. Hepatol. 12(4):231-242. doi: 10.1038/nrgastro.2015.35 Mantuano, E., G. Inoue, X. Li, K. Takahashi, A. Gaultier, S. L. Gonias, and W. M. Campana. 2008. The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J. Neuroseci. 28(45):11571-11582. doi: 10.1523/JNEUROSCI.3053-08.2008 Mashek, D. G., S. A. Khan, A. Sathyanarayan, J. M. Ploeger, and M. P. Franklin. 2015. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology 62(3):964-967. doi: 10.1002/hep.27839 Meissburger, B., L. Stachorski, E. Roder, G. Rudofsky, and C. Wolfrum. 2011. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54(6):1468-1479. doi: 10.1007/s00125-011-2093-9 Miquilena-Colina, M. E., E. Lima-Cabello, S. Sanchez-Campos, M. V. Garcia-Mediavilla, M. Fernandez-Bermejo, T. Lozano-Rodriguez, J. Vargas-Castrillon, X. Buque, B. Ochoa, P. Aspichueta, J. Gonzalez-Gallego, and C. Garcia-Monzon. 2011. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60(10):1394-1402. doi: 10.1136/gut.2010.222844 Mishra, M., J. Flaga, and R. A. Kowluru, 2016. Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy. J. Cell. Physiol. 231(8):1709–1718. doi: 10.1002/jcp.25268 Mishra, M., J. Flaga, and R. A. Kowluru. 2015. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. J. Cell. Physiol. doi: 10.1002/jcp.25268 Mitsuyoshi, H., K. Yasui, Y. Harano, M. Endo, K. Tsuji, M. Minami, Y. Itoh, T. Okanoue, and T. Yoshikawa. 2009. Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol. Res. 39(4):366-373. doi: 10.1111/j.1872-034X.2008.00464.x Mizuguchi, Y., S. Specht, K. Isse, J. G. Lunz, and A. J. Demetris. 2011 Biliary Epithelial Cells. In: Monga S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA Musso, G., R. Gambino, and M. Cassader. 2013. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52(1):175-191. doi: 10.1016/j.plipres.2012.11.002 Nakamaru, Y., C. Vuppusetty, H. Wada, J. C. Milne, M. Ito, C. Rossios, M. Elliot, J. Hogg, S. Kharitonov, H. Goto, J. E. Bemis, P. Elliott, P. J. Barnes, and K. Ito. 2009. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J. 23(9):2810-2819. doi: 10.1096/fj.08-125468 Negro, F. 2014. Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J. Hepatol. 61(1 Suppl):S69-78. doi: 10.1016/j.jhep.2014.08.003 Neuschwander-Tetri, B. A. 2010. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52(2):774-788. doi: 10.1002/hep.23719 Nguyen, P., V. Leray, M. Diez, S. Serisier, J. Le Bloc'h, B. Siliart, and H. Dumon. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92(3):272-283. doi: 10.1111/j.1439-0396.2007.00752.x Nyman, L. R., L. Tian, D. A. Hamm, T. R. Schoeb, B. A. Gower, T. R. Nagy, and P. A. Wood. 2011. Long term effects of high fat or high carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a (CPT-1a) deficiency: Diet influences on CPT1a deficient mice. Nutr. Diabetes 1:e14. doi: 10.1038/nutd.2011.11 O'Farrell, T. J., and T. Pourmotabbed. 2000. Identification of structural elements important for matrix metalloproteinase type V collagenolytic activity as revealed by chimeric enzymes. Role of fibronectin-like domain and active site of gelatinase B. J. Biol. Chem. 275(36):27964-27972. doi: 10.1074/jbc.M003936200 Ogata, Y., J. J. Enghild, and H. Nagase. 1992. Matrix Metalloproteinase 3 (Stromelysin) Activates the Precursor for the Human Matrix Metalloproteinase 9. J. Biol. Chem. 267(6):3581-3584. Pepino, M. Y., O. Kuda, D. Samovski, and N. A. Abumrad. 2014. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annual review of nutrition 34:281-303. doi: 10.1146/annurev-nutr-071812-161220 Poisson, J., S. Lemoinne, C. Boulanger, F. Durand, R. Moreau, D. Valla, and P. E. Rautou. 2017. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 66(1):212-227. doi: 0.1016/j.jhep.2016.07.009 Ponugoti, B., D. H. Kim, Z. Xiao, Z. Smith, J. Miao, M. Zang, S. Y. Wu, C. M. Chiang, T. D. Veenstra, and J. K. Kemper. 2010. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285(44):33959-33970. doi: 10.1074/jbc.M110.122978 Purushotham, A., T. T. Schug, Q. Xu, S. Surapureddi, X. Guo, and X. Li. 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9(4):327-338. doi: 10.1016/j.cmet.2009.02.006 Raabe, M., M. M. Véniant, M. A. Sullivan, C. H. Zlot, J. Björkegren, L. B. Nielsen, J. S. Wong, R. L. Hamilton, and S. G. Young. 1999. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest.103(9):1287-1298. Robert I, Aussems M, Keutgens A, Zhang X, Hennuy B, Viatour P, Vanstraelen G, Merville MP, Chapelle JP, de Leval L, Lambert F, Dejardin E, Gothot A, Chariot A. 2009. Metalloproteinase-9 gene induction by a truncated oncogenic NF-kappaB2 protein involves the recruitment of MLL1 and MLL2 H3K4 histone methyltransferase complexes. Oncogene 28:1626–1628. Rosenblum, G., P. E. Van den Steen, S. R. Cohen, J. G. Grossmann, J. Frenkel, R. Sertchook, N. Slack, R. W. Strange, G. Opdenakker, and I. Sagi. 2007. Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 15(10):1227-1236. doi: 10.1016/j.str.2007.07.019 Schmid, H., I. C. Kettelhut, andR. H. Migliorini. 1984. Reduced lipogenesis in rats fed a high-protein carbohydrate-free diet. Metabolism 33(3):219-223. Senoo, H., K. Imai, Y. Matano, and M. Sato. 1998. Molecular mechanisms in the reversible regulation of morphology, proliferation and collagen metabolism in hepatic stellate cells by the three-dimensional structure of the extracellular matrix. J. Gastroenterol. Hepatol. 13(Suppl):S19-32. Shoji, A., M. Kabeya, and M. Sugawara. 2011. Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor. Anal. Biochem. 419(1):53-60. doi: 10.1016/j.ab.2011.07.031 Smith, J. S., C. B. Brachmann, I. Celic, M. A. Kenna, S. Muhammad, V. J. Starai, J. L. Avalos, J. C. Escalante-Semerena, C. Grubmeyer, C. Wolberger, and J. D. Boeke. 2000. A phylogenetically conserved NAD1-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. U. S. A. 97(12):6658-6663. Tanoli, T., P. Yue, D. Yablonskiy, and G. Schonfeld. 2004. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J. Lipid. Res. 45(5):941-947. doi: 10.1194/jlr.M300508-JLR200 Tiwari, S., and S. A. Siddiqi. 2012. Intracellular trafficking and secretion of VLDL. Arterioscler. Thromb. Vasc. Biol. 32(5):1079-1086. doi: 10.1161/ATVBAHA.111.241471 Tomita, K., G. Tamiya, S. Ando, K. Ohsumi, T. Chiyo, A. Mizutani, N. Kitamura, K. Toda, T. Kaneko, Y. Horie, J. Y. Han, S. Kato, M. Shimoda, Y. Oike, M. Tomizawa, S. Makino, T. Ohkura, H. Saito, N. Kumagai, H. Nagata, H. Ishii, and T. Hibi. 2006. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55(3):415-424. Uyeda, K., and J. J. Repa. 2006. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4(2):107-110. doi: 10.1016/j.cmet.2006.06.008 Van den Steen, P. E., B. Dubois, I. Nelissen, P. M. Rudd, R. A. Dwek, and G. Opdenakker. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37(6):375-536. doi: 10.1080/10409230290771546 Van den Steen, P. E., I. Van Aelst, V. Hvidberg, H. Piccard, P. Fiten, C. Jacobsen, S. K. Moestrup, S. Fry, L. Royle, M. R. Wormald, R. Wallis, P. M. Rudd, R. A. Dwek, and G. Opdenakker. 2006. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J. Biol. Chem. 281(27):18626-18637. doi: 10.1074/jbc.M512308200 Vandooren, J., P. E. Van den Steen, and G. Opdenakker. 2013. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol. 48(3):222-272. doi: 10.3109/10409238.2013.770819 Vu, T. H., J. M. Shipley, G. Bergers, J. E. Berger, J. A. Helms, D. Hanahan, S. D. Shapiro, R. M. Senior, and Z. Werb. 1998. MMP-9/Gelatinase B Is a Key Regulator of Growth Plate Angiogenesis and Apoptosis of Hypertrophic Chondrocytes. Cell 93(3):411-422. Wheeler, H.O., and O. L. Ramos. 1960. Determinants of the Flow and Composition of Bile in the Unanesthetized Dog during Constant Infusions of Sodium Taurocholate. J. Clin. Invest. 39(1):161-170. Wilson, C. G., J. L. Tran, D. M. Erion, N. B. Vera, M. Febbraio, and E. J. Weiss. 2016. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology 157(2):570-585. doi: 10.1210/en.2015-1866 Xu, F., Z. Gao, J. Zhang, C. A. Rivera, J. Yin, J. Weng, and J. Ye. 2010. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 151(6):2504-2514. doi: 10.1210/en.2009-1013 Yu, X., Y. Huang, P. Collin-Osdoby, and P. Osdoby. 2003. Stromal Cell-Derived Factor-1 (SDF-1) Recruits Osteoclast Precursors by Inducing Chemotaxis, Matrix Metalloproteinase-9 (MMP-9) Activity, and Collagen Transmigration. J. Bone. Miner. Res. 18(8):1404-1418. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70042 | - |
dc.description.abstract | 近年來,非酒精性脂肪肝 (non-alcoholic fatty liver disease, NAFLD) 已成為主要的慢性肝病之一。常見的非酒精性脂肪肝包含,脂質浸潤 (simple steatosis) 以及脂性肝炎 (non-alcoholic steatohepatitis, NASH),且如果病程持續劣化,將有機會演變成肝硬化 (cirrhosis) 甚至肝癌 (hepatocellular carcinoma)。已知肝臟中失衡的脂質代謝是 NAFLD 的主要病因之一,因此透過了解肝臟中脂質代謝的調控,將有提供發展預防或治療 NAFLD 之方向。基質金屬蛋白分解酶9 (matrix metalloproteinase 9, MMP-9) 為截切胞外的基質之酵素,近年來被發現可能參與在肝臟脂質代謝之調控中,研究指出持續給予小鼠 MMPs 抑制劑 tissue metalloproteinase inhibitor 1 (TIMP-1),其肝臟會有較多脂質堆積,除此之外,在MMP-9 基因缺失小鼠肝臟中,也被發現具有異常的脂質代謝相關基因表現,因此我們推論,MMP-9 可能在 NAFLD 的病程演變之中扮演重要角色。
為了證實此假說,本試驗利用 MMP-9 基因缺失 (Mmp-9-/-) 小鼠與肝癌細胞株 Hepa1-6 進行動物及細胞實驗。在動物實驗中,即便野生型 (wild type, WT) 與 Mmp-9-/- 小鼠在體重上並沒有顯著差異,qPCR 與 western bolt 實驗結果顯示,Mmp-9-/- 小鼠肝臟中具有較低的 Sirt1 表現量,與較高的 Cd36 表現。Cd36 為肝細胞膜上負責攝入脂肪酸之運輸蛋白,而其表現受到去乙醯基酶 (deacetylase) Sirt1 的抑制,因此我們推論 MMP-9 缺失所造成的肝臟脂質堆積可能是藉由減少肝臟中 Sirt1 的蛋白質含量並間接增加 Cd36 的表現所導致。而透過細胞實驗得知,單只減少肝癌細胞株 Hepa1-6 內的 MMP-9 表現量,便可以看到脂質堆積與 Sirt1 的減少、Cd36 的增加的現象。 綜上所述,本試驗證實 MMP-9 確實參與在肝臟脂質代謝的調控過程,且其可能透過 Sirt1/Cd36 路徑來影響肝臟脂質代謝,然而,MMP-9 是如何影響 Sirt1 與 MMP-9/Sirt1/Cd36 路徑在 NAFLD 病程中所扮演的角色,仍需更多實驗來釐清。 | zh_TW |
dc.description.abstract | Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in recent years. NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), which can further develop into cirrhosis and hepatocellular carcinoma. Because the dysregulation of hepatic lipid metabolism is currently thought to be the major cause of NAFLD, it is important to clarify how hepatic lipid metabolism was regulated during NAFLD. Matrix metalloproteinase 9 (MMP-9), an extracellular matrix degrading enzyme, was recently found to be involved in regulation of hepatic lipid metabolism. It was found that tissue inhibitor of metalloproteinase 1 (TIMP-1) treatment increases mouse liver TG content. Besides, altered expression pattern of lipid metabolism-related genes was found in MMP-9 deficient mice. Based on these findings, we hypothesized that MMP-9 may play an important role during NAFLD development.
To confirm our hypothesis, we conducted both in vivo and in vitro experiments using MMP-9 knockout mice and Hepa1-6 cell line respectively. Our in vivo results showed that although the body weight was not changed, MMP-9 knockout increased the plasma and hepatic triglyceride level in mice. Importantly, our Western blots and qPCR data showed that MMP-9 knockout significantly decreased the protein level of Sirt1 and increased Cd36 mRNA expression in liver. Sirt1 was previously found to inhibit Cd36, which is a long chain fatty acids uptake protein, mRNA expression as a NAD-dependent deacetylase. These findings suggest that MMP-9 knockout may cause hepatic steatosis by reducing Sirt1 protein expression and indirectly increasing Cd36 expression. Similarly, we found that siRNA mediated MMP-9 knockdown increased lipid accumulation and decreased Sirt1 protein level in Hepa1-6 cells. Taken together, our study has confirmed the regulatory function of MMP-9 in hepatic lipid metabolism. In addition, our data also indicated Sirt1 as a possible downstream target of MMP-9, which may be important in MMP-9 regulated hepatic lipid metabolism. However, the role of MMP-9/Sirt1/Cd36 in NAFLD development still needs more experiments to be clarified. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:40:22Z (GMT). No. of bitstreams: 1 ntu-107-R04626011-1.pdf: 2380734 bytes, checksum: 285760af30ce4335b697689de97fab5c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 ix 第一章 前言 1 第二章 文獻探討 2 2.1 肝臟 2 2.2 肝病 11 2.3 基質金屬蛋白分解酶9 (matrix metalloproteinase-9, MMP-9) 與 NAFLD 17 2.4 MMP-9 17 第三章 材料與方法 22 3.1 實驗動物 22 3.2 實驗設計 22 3.3 血液生化值測定 22 3.4 石蠟包埋及切片 23 3.5 TG 萃取及定量 24 3.6 細胞培養 24 3.7 MMP-9 knockdown (MMP-9 KD) 24 3.8 螢光染色 25 3.9 蛋白質萃取、定量及保存 25 3.10 西方點墨法 (Western blot) 25 3.11 引子設計 26 3.12 RNA 萃取 26 3.13 定量聚合酶連鎖反應 (quantitative polymerase chain reaction, qPCR) 27 3.14 統計分析 27 第四章 結果 28 4.1 MMP-9 缺失 (Mmp-9-/-) 小鼠會表現沒有酵素截切功能之 MMP-9 28 4.2 Mmp-9-/- 小鼠血清與肝臟中有較高的 TG 含量 28 4.3 Mmp-9-/- 小鼠肝臟 Sirt1 含量顯著低於 WT 小鼠,並有較高的 Cd36 表現量 29 4.4 建立 MMP-9 缺失細胞試驗模型 30 4.5 MMP-9 KD 之 Hepa1-6 細胞具有較低的 Sirt1 和較高 Cd36 表現 31 第五章 討論 32 5.1 Mmp-9-/- 小鼠可以表現 MMP-9 但其缺乏酵素活性 32 5.2 MMP-9 缺失使小鼠肝臟內脂質堆積上升 32 5.3 抑制 Hepa1-6 中 MMP-9 的表現導致細胞堆積脂質 35 第六章 結論 37 參考文獻 50 附錄 引子設計序列 64 | |
dc.language.iso | zh-TW | |
dc.title | 基質金屬蛋白分解酶 9 與 Sirt1 在肝臟脂質代謝中所扮演之角色 | zh_TW |
dc.title | The role of matrix metalloproteinase 9 and Sirt1 in hepatic lipid metabolism | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳兩新 | |
dc.contributor.oralexamcommittee | 鍾德憲,陳億乘,徐慶琳 | |
dc.subject.keyword | 非酒精性脂肪肝病,脂質浸潤,基質金屬蛋白?9,Sirt1,Cd36, | zh_TW |
dc.subject.keyword | NAFLD,Steatosis,MMP-9,Sirt1,Cd36, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201800386 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。