Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYu-Xiang Linen
dc.contributor.author林煜翔zh_TW
dc.date.accessioned2021-06-17T03:39:55Z-
dc.date.available2023-02-22
dc.date.copyright2018-02-22
dc.date.issued2018
dc.date.submitted2018-02-08
dc.identifier.citationAi, L., Skehan, R.R., Saydi, J., Lin, T., and Brown, K.D. (2012). Ataxia-Telangiectasia, Mutated (ATM)/Nuclear Factor kappa light chain enhancer of activated B cells (NFkappaB) signaling controls basal and DNA damage-induced transglutaminase 2 expression. J Biol Chem 287, 18330-18341.
Ali, H., Shaaban, A., Murtaza, A., Howell, L.E., and Ahmed, A. (2016). Effect of Long-Term, Low-Dose Aspirin Therapy on Renal Graft Function. Exp Clin Transplant 15, 400-404.
Amann, R., and Peskar, B.A. (2002). Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447, 1-9.
Arias, I.M., Wolkoff, A.W., Boyer, J.L., Shafritz, D.A., Fausto, N., Alter, H.J., and Cohen, D.E. (2011). The liver: biology and pathobiology. In (John Wiley & Sons), pp. 3-15.
Aziz, M., Jacob, A., Matsuda, A., Wu, R., Zhou, M., Dong, W., Yang, W.L., and Wang, P. (2011). Pre-treatment of recombinant mouse MFG-E8 downregulates LPS-induced TNF-alpha production in macrophages via STAT3-mediated SOCS3 activation. PLoS One 6, e27685.
Bacon, B.R., Bisceglie, J.G.O.G.A.M.D., and Lake, J.R. (2006). Comprehensive clinical hepatology. In Comprehensive clinical hepatology (Elsevier Health Sciences), pp. 1-15.
Bataller, R., and Brenner, D.A. (2005). Liver fibrosis. J Clin Investig 115, 209-218.
Bieghs, V., Verheyen, F., Gorp, P.J.v., Hendrikx, T., Wouters, K., Lutjohann, D., and Shiri-Sverdlov, R. (2012). Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS One 7, e34378.
Blomhoff, R., Green, M.H., Berg, T., and Norum, K.R. (1990). Transport and storage of vitamin A. Science 250, 399-404.
Caballero, F., Fernandez, A., De Lacy, A.M., Fernandez-Checa, J.C., Caballeria, J., and Garcia-Ruiz, C. (2009). Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 50, 789-796.
Campbell, J.S., Hughes, S.D., Gilbertson, D.G., Palmer, T.E., Holdren, M.S., Haran, A.C., Odell, M.M., Bauer, R.L., Ren, H.P., Haugen, H.S., et al. (2005). Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 102, 3389-3394.
Chávez, E., Castro‐Sánchez, L., Shibayama, M., Tsutsumi, V., Salazar, E.P., Morenoa, M.G., and Muriel, P. (2012). Effects of acetyl salycilic acid and ibuprofen in chronic liver damage induced by CCl4. J Appl Toxicol 32, 51-59.
Chandrasekharan, N.V., and Simmons, D.L. (2004). The cyclooxygenases. Genome Biol 5, 241.
Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two 'hits'? Gastroenterology 114, 842-845.
De Cristofaro, R., Rocca, B., Vitacolonna, E., Falco, A., Marchesani, P., Ciabattoni, G., Landolfi, R., Patrono, C., and Davi, G. (2003). Lipid and protein oxidation contribute to a prothrombotic state in patients with type 2 diabetes mellitus. J Thromb Haemost 1, 250-256.
Dixon, L.J., Barnes, M., Tang, H., Pritchard, M.T., and Nagy, L.E. (2013). Kupffer cells in the liver. Compr Physiol 3, 785-797.
Farrell, G.C., van Rooyen, D., Gan, L., and Chitturi, S. (2012). NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 6, 149-171.
Farrell, G.C., Wong, V.W., and Chitturi, S. (2013). NAFLD in Asia--as common and important as in the West. Nat Rev Gastroenterol Hepatol 10, 307-318.
Friedman, S.L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275, 2247-2250.
Friedman, S.L. (2008). Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88, 125-172.
Guillemot-Legris, O., Mutemberezi, V., Cani, P.D., and Muccioli, G.G. (2016). Obesity is associated with changes in oxysterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma. Sci Rep 6, 19694.
Hardy, T., Oakley, F., Anstee, Q.M., and Day, C.P. (2016). Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annu Rev Pathol 11, 451-496.
Hawkey, C.J. (2001). COX-1 and COX-2 inhibitors. Best Pract Res Clin Rheumatol 15, 801-820.
He, M., Zhang, W., Dong, Y., Wang, L., Fang, T., Tang, W., Lv, B., Chen, G., Yang, B., Huang, P., et al. (2017). Pro-inflammation NF-kappaB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells. J Exp Clin Cancer Res 36, 15.
He, Z., Peng, Y., Duan, W., Tian, Y., Zhang, J., Hu, T., Cai, Y., Feng, Y., and Li, G. (2015). Aspirin regulates hepatocellular lipid metabolism by activating AMPK signaling pathway. J Toxicol Sci 40, 127-136.
Hendriks, H.F., Blaner, W.S., Wennekers, H.M., Piantedosi, R., Brouwer, A., de Leeuw, A.M., Goodman, D.S., and Knook, D.L. (1988). Distributions of retinoids, retinoid-binding proteins and related parameters in different types of liver cells isolated from young and old rats. Eur J Biochem 171, 237-244.
Hubscher, S.G. (2006). Histological assessment of non-alcoholic fatty liver disease. Histopathology 49, 450-465.
Hundal, R.S., Petersen, K.F., Mayerson, A.B., Randhawa, P.S., Inzucchi, S., Shoelson, S.E., and Shulman, G.I. (2002). Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Investig 109, 1321-1326.
Ioannou, G.N., Morrow, O.B., Connole, M.L., and Lee, S.P. (2009). Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50, 175-184.
Jung, U.J., and Choi, M.S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15, 6184-6223.
Jusakul, A., Yongvanit, P., Loilome, W., Namwat, N., and Kuver, R. (2011). Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis 10, 44.
Kainuma, M., Fujimoto, M., Sekiya, N., Tsuneyama, K., Cheng, C., Takano, Y., Terasawa, K., and Shimada, Y. (2006). Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. J Gastroenterol 41, 971-980.
Kang, L.I., Mars, W.M., and Michalopoulos, G.K. (2012). Signals and cells involved in regulating liver regeneration. Cells 1, 1261-1292.
Kim, D., Kim, W.R., Kim, H.J., and Therneau, T.M. (2013). Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57, 1357-1365.
Kira, S., Nakanishi, T., Suemori, S., Kitamoto, M., Watanabe, Y., and Kajiyama, G. (1997). Expression of transforming growth factor alpha and epidermal growth factor receptor in human hepatocellular carcinoma. Liver 17, 177-182.
Kisseleva, T., and Brenner, D.A. (2008). Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 233, 109-122.
Kopp, E., and Ghosh, S. (1994). Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956-959.
Lecluyse, E.L., and Alexandre, E. (2010). Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol Biol 640, 57-82.
Li, C.-J., Yang, Z.-H., Shi, X.-L., and Liu, D.-L. (2017). Effects of aspirin and enoxaparin in a rat model of liver fibrosis. World J Gastroenterol 23, 6412-6419.
Lin, H.-L., Yen, H.-W., Hsieh, S.-L., An, L.-M., and Shen, K.-P. (2014). Low-dose aspirin ameliorated hyperlipidemia, adhesion molecule, and chemokine production induced by high-fat diet in Sprague-Dawley rats. Drug Dev Res 75, 97-106.
Liu, Y., Fang, S., Li, X., Feng, J., Du, J., Guo, L., Su, Y., Zhou, J., Ding, G., Bai, Y., et al. (2017). Aspirin inhibits LPS-induced macrophage activation via the NF-kappaB pathway. Sci Rep 7, 11549.
Ludwig, J., Viggiano, T.R., McGill, D.B., and Oh, B.J. (1980). Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55, 434-438.
Maslak, E., Gregorius, A., and Chlopicki, S. (2015). Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 67, 689-694.
Matsuzawa, N., Takamura, T., Kurita, S., Misu, H., Ota, T., Ando, H., Yokoyama, M., Honda, M., Zen, Y., Nakanuma, Y., et al. (2007). Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392-1403.
Mazzeo, D., Panina-Bordignon, P., Recalde, H., Sinigaglia, F., and D'Ambrosio, D. (1998). Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-kappaB. Eur J Immunol 28, 3205-3213.
McFarland, B.C., Hong, S.W., Rajbhandari, R., Twitty, G.B., Jr., Gray, G.K., Yu, H., Benveniste, E.N., and Nozell, S.E. (2013). NF-kappaB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 8, e78728.
Morris, T., Stables, M., Hobbs, A., de Souza, P., Colville-Nash, P., Warner, T., Newson, J., Bellingan, G., and Gilroy, D.W. (2009). Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol 183, 2089-2096.
Musso, G., Cassader, M., and Gambino, R. (2011). Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease: an update. Curr Opin Lipidol 22, 489-496.
Nguyen-Lefebvre, A.T., and Horuzsko, A. (2015). Kupffer Cell Metabolism and Function. J Enzymol Metab 1, 1-26.
Oeckinghaus, A., and Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1, a000034.
Ogawa, T., Fujii, H., Yoshizato, K., and Kawada, N. (2010). A human-type nonalcoholic steatohepatitis model with advanced fibrosis in rabbits. Am J Pathol 177, 153-165.
Onyekwere, C.A., Ogbera, A.O., Samaila, A.A., Balogun, B.O., and Abdulkareem, F.B. (2015). Nonalcoholic fatty liver disease: Synopsis of current developments. Niger J Clin Pract 18, 703-712.
Poli, G., Biasi, F., and Leonarduzzi, G. (2013). Oxysterols in the pathogenesis of major chronic diseases. Redox Biol 1, 125-130.
Rinella, M.E. (2015). Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273.
Ruderman, N.B., Carling, D., Prentki, M., and Cacicedo, J.M. (2013). AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123, 2764-2772.
Safadi, R., and Friedman, S.L. (2002). Hepatic fibrosis--role of hepatic stellate cell activation. MedGenMed 4, 27.
Saliba, D.G., Heger, A., Eames, H.L., Oikonomopoulos, S., Teixeira, A., Blazek, K., Androulidaki, A., Wong, D., Goh, F.G., Weiss, M., et al. (2014). IRF5:RelA interaction targets inflammatory genes in macrophages. Cell Rep 8, 1308-1317.
Sanchez de Miguel, L., de Frutos, T., Gonzalez-Fernandez, F., del Pozo, V., Lahoz, C., Jimenez, A., Rico, L., Garcia, R., Aceituno, E., Millas, I., et al. (1999). Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-alpha release by cultured smooth muscle cells. Eur J Clin Invest 29, 93-99.
Santilli, F., Simeone, P., Liani, R., and Davì, G. (2015). Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat 120, 28-39.
Schwenger, K.J., and Allard, J.P. (2014). Clinical approaches to non-alcoholic fatty liver disease. World J Gastroenterol 20, 1712-1723.
Shao, B.Z., Xu, Z.Q., Han, B.Z., Su, D.F., and Liu, C. (2015). NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6, 262.
Shen, H., Shahzad, G., Jawairia, M., Bostick, R.M., and Mustacchia, P. (2014). Association between aspirin use and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study from the Third National Health and Nutrition Examination Survey. Aliment Pharmacol Ther 40, 1066-1073.
Song, Z., Gupta, K., Ng, I.C., Xing, J., Yang, Y.A., and Yu, H. (2017). Mechanosensing in liver regeneration. Semin Cell Dev Biol 71, 153-167.
Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., et al. (2011). Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52, 1626-1635.
Sun, X., Han, F., Yi, J., Han, L., and Wang, B. (2011). Effect of aspirin on the expression of hepatocyte NF-kappaB and serum TNF-alpha in streptozotocin-induced type 2 diabetic rats. J Korean Med Sci 26, 765-770.
Tabibian, J.H., Masyuk, A.I., Masyuk, T.V., O'Hara, S.P., and LaRusso, N.F. (2013). Physiology of cholangiocytes. Compr Physiol 3, 541-565.
Teratani, T., Tomita, K., Suzuki, T., Oshikawa, T., Yokoyama, H., Shimamura, K., Tominaga, S., Hiroi, S., Irie, R., Okada, Y., et al. (2012). A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142, 152-164.e110.
Tomita, K., Teratani, T., Suzuki, T., Shimizu, M., Sato, H., Narimatsu, K., Okada, Y., Kurihara, C., Irie, R., Yokoyama, H., et al. (2014). Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59, 154-169.
Trauner, M., Arrese, M., and Wagner, M. (2010). Fatty liver and lipotoxicity. Biochim Biophys Acta 1801, 299-310.
Vinals, M., Bermu, I., Va´dez, M., Llaverias, G., Alegret, M., Sanchez´zquez-Carrera, R.M., and Laguna, J.C. (2005). Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc Res 66, 141-149.
Wouters, K., van Gorp, P.J., Bieghs, V., Gijbels, M.J., Duimel, H., Lutjohann, D., Kerksiek, A., van Kruchten, R., Maeda, N., Staels, B., et al. (2008). Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474-486.
Yin, M.J., Yamamoto, Y., and Gaynor, R.B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77-80.
Zhang, H., Chen, Z., Miranda, R.N., Medeiros, L.J., and McCarty, N. (2016). TG2 and NF-kappaB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res 76, 6410-6423.
Zhao, Y.-J., Ju, Q., and Li, G.-C. (2013). Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 1, 593-598.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70034-
dc.description.abstract非酒精性脂肪肝疾病 (Non-alcoholic fatty liver disease, NAFLD) 是一系列疾病進程的總稱:包含單純脂質堆積 (Steatosis)、非酒精性脂肪肝炎 (Non-alcoholic steatohepatitis, NASH) 與更嚴重的肝纖維化 (Liver fibrosis) 及肝硬化 (Cirrhosis)。其中由脂質堆積進展到 NASH 是 NAFLD 往更嚴重病程惡化的關鍵。過去文獻與實驗室游盈甄學姊的研究結果發現,阿斯匹靈可抑制 NF-κB 路徑。NF-κB 路徑被視為是引起 NASH 的關鍵促發炎路徑之一,而阿斯匹靈 (又名乙醯水楊酸, Acetylsalicylic acid, ASA) 是一種常見且普遍應用於臨床的非類固醇消炎藥,先前游盈甄學姊的實驗結果顯示,在高油高膽固醇飼料 (HF diet) 誘發 NASH 的倉鼠動物模式中,飼料中添加 0.01% ASA 經過 6 週與 10 週餵養,可抑制 NF-κB 活化與降低血脂。而由於 NAFLD 為慢性且早期幾乎無症狀,於是我們想瞭解 ASA 是否在長期的處理下還可具有延緩 NASH 進展的效果。因此本實驗測試在60週的高油高膽固醇飼料 (HF diet) 誘發 NASH 的倉鼠動物模式中,ASA 是否可改善NASH的進展。此實驗將黃金敘利亞倉鼠分為兩組,分別為餵食高油高膽固醇飼料的 HF 組,與 HF 飼料中外加 0.01% ASA 的 HF + ASA 組。結果顯示,餵食 60 週後相較於 HF 組,HF + ASA 組除了可降血漿總膽固醇,也會降低相關促發炎細胞激素:TNF-α、IL-1β 與 IL-6 之 mRNA 表現量與 IL-1β 之蛋白量,達到抗發炎的效果。與 HF 組相比,HF+ASA 組之TGF-βmRNA表現量顯著降低至62%;且肝纖維化評分上也發現,Stage3 等級視野比例降低至 30%。此外,在本次實驗中觀察到 HF 組的肝臟外部形態有白色小突起的構造,而在 HF + ASA 組中則沒有發現。加上HF+ASA組肝臟TGF-α與AFP (α-Fetoprotein)的mRNA表現量也顯著降低至72%與28%,顯示在60週處理下,ASA具有延緩肝纖維化與HCC發生的潛力。不過同時也發現相較於HF組,HF + ASA組會提高CD36 mRNA的表現量,而CD36有文獻指出被認為是促發炎因子。雖然如此,本實驗發現整體而言,ASA的抗發炎潛力大於促發炎潛力,至於抗發炎與促發炎兩者間的交互作用有待未來後續實驗進一步深入探討。zh_TW
dc.description.abstractNonalcoholic fatty liver disease (NAFLD), is a spectrum of liver disease in the absence of excessive alcohol consumption, includes simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and ultimately cirrhosis. Progress of simple steatosis to NASH is the key point for NAFLD progressing to more severe stages. Previous studies showed that Aspirin inhibited NF-κB pathway, which has been considered one of the key proinflammatory signaling pathway that leads to NASH. Moreover, Aspirin, also known as acetylsalicylic acid (ASA), is one of the commonly used nonsteroidal anti-inflammatory drugs (NSAIDs). It has been widely used in clinical practice. Our previous data showed that ASA inhibited NF-κB activation and decreased plasma lipids in HFC diet-induced NASH in hamsters in 6 and 10 weeks studies. NAFLD is a chronic disease and there is few or no symptom in the early stage; therefore, the aim of this study is to investigate if ASA is able to delay progression to NASH in a long-term period.
In this study, we tested if ASA able to improve NASH in the hamster model fed with HF diet for 60 weeks. Golden Syrian hamsters were fed with high fat high cholesterol diet (HF) or HF diet supplemented with 0.01% ASA (HF + ASA) for 60 weeks. The results show that compared to the HF group, ASA not only lower plasma levels of total cholesterol but also lower the levels of TNF-α, IL-1β, IL-6 mRNA and the protein level of IL-1β in the liver. Furthermore, the levels of TGF-1 mRNA in HF+ASA group was 62% of that in the HF group, and the Stage3 fibrosis score was 30% of that in the HF group. In addition, white spots on the surface of livers in HF group, but they were not found in livers in HF + ASA group. Moreover, the levels of hepatic TGF-and -fetoprotein (AFP) mRNA in the HF+ASA group were 72% and 28%, respectively, of that in the HF group. These data suggest that ASA tend to delay the progression of liver fibrosis and HCC. However, compared to the HF group, ASA also increased hepatic mRNA levels of CD36 which has been considered a proinflammatory factor. Nevertheless, the anti-inflammatory potential is stronger than proinflammatory potential in the HF+ASA group than in the HF group. Investigation of the interaction between anti-inflammatory and proinflammatory effects of ASA can be planned in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:39:55Z (GMT). No. of bitstreams: 1
ntu-107-R04442032-1.pdf: 2314934 bytes, checksum: 06601ba17c631a4f5e475ce9ceb9ce4e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
口試委員審定書 i
摘要 ii
Abstract iii
目錄 v
表目錄 vii
第一章、緒論 1
第一節、 文獻回顧 2
第二節、 研究動機與實驗目的 12
第二章、材料與方法 13
第一節、 實驗材料 14
第二節、 實驗方法 15
第三章、實驗結果 29
第一節、 動物體重、肝重與肝臟外部形態 30
第二節、 肝組織總膽固醇 (Total Cholesterol, TC) 與三酸甘油酯 (Triglyceride, TG) 含量 30
第三節、 血液生化分析 30
第四節、 肝臟石蠟包埋切片分析 31
第五節、 肝臟基因相對量分析 32
第六節、 肝臟發炎相關蛋白質相對量分析 34
第四章、討論 35
第一節、 總結 36
第二節、 長期的高油高膽固醇飼料餵食對倉鼠產生傷害 36
第三節、 長期 ASA 處理能維持降低血漿膽固醇的效果 36
第四節、 長期ASA處理有延緩肝纖維化的潛力 37
第五節、 長期 ASA 處理可改善肝臟發炎情形 38
第六節、 長期 ASA 處理對於巨噬細胞的極化未顯著影響 39
第七節、 ASA 增加 CD36 之表現量 39
第八節、 長期 ASA 處理有延緩肝癌 (HCC) 的潛力 40
第九節、 未來發展 41
第五章、圖表 42
第六章、參考文獻 57
dc.language.isozh-TW
dc.title阿斯匹靈改善倉鼠因長期高脂高膽固醇飼料所造成之肝臟發炎zh_TW
dc.titleAspirin ameliorate hepatic inflammation induced by a long-term high fat/high cholesterol diet in hamstersen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳惠玲(Hui-Ling Chen),何承懋(Cheng-Maw Ho),張美鈴(Mei-Ling Chang)
dc.subject.keyword非酒精性脂肪肝疾病,非酒精性脂肪肝炎 (NASH),阿斯匹靈 (ASA),膽固醇,核因子活化B細胞κ輕鏈增強子 (NF-κB),zh_TW
dc.subject.keywordNAFLD,NASH,Aspirin (ASA),Cholesterol,NF-κB,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201800420
dc.rights.note有償授權
dc.date.accepted2018-02-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved