Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷
dc.contributor.authorHsuan-Han Chenen
dc.contributor.author陳宣翰zh_TW
dc.date.accessioned2021-06-17T03:39:31Z-
dc.date.available2020-02-23
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-02-08
dc.identifier.citationBibliography
[1] https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html retrieved at 2017/10/26.
[2] https://www.cdc.gov/niosh/npg/npgd0103.html retrieved at 2017/10/27.
[3] Mark Stucky. Demand Control Ventilation Benefits for Your Building. 2016.
[4] Amy Nordrum. Popular Internet of Things Forecast of 50 Billion Devices by 2020 is Outdated. In IEEE Spectrum, 2016.
[5] Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. Architecting the Internet of Things: State of the Art. 2015.
[6] O. Lupan, L. Chow, S. Shishiyanu, E. Monaico, T. Shishiyanu, V. Sontea, B. Roldan Cuenya, A. Naitabdi, S. Park, and A. Schulte. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications. Materials Research Bulletin, 44:63–69, 2009.
[7] Sandra C. H., James Kakoullis, Jr., Jae Hong Lim, Syed Mubeen, Carlos M. Hangarter, Ashok Mulchandani, and Nosang V. Myung. Hybrid ZnO/SWNT Nanostructures Based Gas Sensor. Electroanalysis, 24(7):1613–1620, 2012.
[8] Muhammad Habib, Syed Sajjad Hussain, Saira Riaz, and Shahzad Naseem. Preparation and characterization of ZnO nanowires and their applications in CO₂ gas sensors. Materials Today: Proceedings, 2:5714–5719, 2015.
[9] X. Du, Y. Du, and S. M. George. CO Gas Sensing by Ultrathin Tin Oxide Films Grown by Atomic Layer Deposition Using Transmission FTIR Spectroscopy. Journal of Physical Chemistry A, 112:9211–9219, 2008.
[10] Gang Chen, Binqian Han, Shaojuan Deng, Yan Wang, and Yude Wang. Lanthanum Dioxide Carbonate La₂O₂CO₃ Nanorods as a Sensing Material for Chemoresistive CO₂ Gas Sensor. Electrochimica Acta, 127:355–361, 2014.
[11] Xiaofeng Wang, Hongwei Qin, Lihui Sun, and Jifan Hu. CO₂ sensing properties and mechanism of nanocrystalline LaFeO₃ sensor. Sensors and Actuators B, 188: 965–971, 2013.
[12] Carlos R. Michel, Alma H. Martínez-Preciado, Rodrigo Parra, Celso M. Aldao, and Miguel A. Ponce. Novel CO₂ and CO gas sensor based on nanostructured Sm₂O₃ hollow microspheres. Sensors and Actuators B, 202:1220–1228, 2014.
[13] Keat G. Ong and Craig A. Grimes. A Carbon Nanotube-based Sensor for CO₂ Monitoring. Sensors, 1(6):193–205, 2001.
[14] Syed Muhammad Hafiz, Richard Ritikos, Thomas James Whitcher, Nadia Md. Razib, Daniel Chia Sheng Bien, Narong Chanlek, Hideki Nakajima, Thanit Saisopa, Prayoon Songsiriritthigul, Nay Ming Huang, and Saadah Abdul Rahman. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and Actuators B, 193:692–700, 2014.
[15] Ingle J. D. and Crouch S. R. Spectrochemical Analysis. 1988.
[16] Jane Hodgkinson and Ralph P. Tatam. Optical gas sensing: a review. Measurement Science and Technology, 24(1), 2013.
[17] Steven W. Sharpe, Timothy J. Johnson, Robert L. Sams, Pamela M. Chu, George C. Rhoderick, and Patricia A. Johnson. Gas-Phase Databases for Quantitative Infrared Spectroscopy. Applied Spectroscopy, 58(12), 2004.
[18] Yasuhiro Shimizu, Kazuhiko Komori, and Makoto Egashira. Carbon Dioxide Sensor Consisting of K₂CO₃-Polyethylene Glycol Solution Supported on Porous Ceramics. Journal of Electrochemical Society, 136(8):2256–2260, 1989.
[19] Tin C. D. Doan, Jacob Baggerman, Rajesh Ramaneti, Hien D. Tong, Antonius T. M. Marcelis, and Cees J. M. van Rijn. Carbon dioxide detection with polyethylenimine blended with polyelectrolytes. Sensors and Actuators B, 201:452–459, 2014.
[20] Tsuyoshi Tonosaki, Takahiro Oho, Hiroshi Shiigi, Kazutoshi Isomura, and Kotaro Ogura. Highly Sensitive CO₂ Sensor with Polymer Composites Operating at Room Temperature. Analytical Sciences/Supplements, 17icas:249–252, 2002.
[21] K. Ogura and H. Shiigi. A CO₂ Sensing Composite Film Consisting of Base-Type Polyaniline and Poly(vinyl alcohol). Electrochemical and Solid-State Letters, 2(9): 478–480, 1999.
[22] T. Oho, T. Tonosaki, K. Isomura, and K. Ogura. A CO₂ sensor operating under high humidity. Journal of Electroanalytical Chemistry, 522:173–178, 2002.
[23] Tin C. D. Doan, Rajesh Ramaneti, Jacob Baggerman, J. Franc van der Bent, Antonius T. M. Marcelis, Hien D. Tong, and Cees J. M. van Rijn. Carbon dioxide sensing with sulfonated polyaniline. Sensors and Actuators B, 168:123–130, 2012.
[24] X. P. Chen, C. K. Y. Wong, C. A. Yuan, and G. Q. Zhang. Evaluation and selection of sensing materials for carbon dioxide (CO₂ sensor by molecular modeling. Procedia Engineering, 25:379–382, 2011.
[25] Chi-Ju Chiang, Kang-Ting Tsai, Yi-Huan Lee, Hung-Wei Lin, Yi-Lung Yang, Chien-Chung Shih, Chia-Yu Lin, Huai-An Jeng, Yu-Hsuan Weng, Yao-Yi Cheng, Kuo-Chuan Ho, and Chi-An Dai. In situ fabrication of conducting polymer composite film as a chemical resistive CO₂ gas sensor. Microelectronic Engineering, 111:409–415, 2013.
[26] S. Neethirajan, M. S. Freund, D. S. Jayas, C. Shafai, D. J. Thomson, and N. D. G. White. Development of carbon dioxide (CO₂) sensor for grain quality monitoring. Biosystems Engineering, 106:395–404, 2010.
[27] Hua Bai and Gaoquan Shi. Gas sensors based on conducting polymers. In Sensors, volume 7, pages 267–307. MDPI, 2007.
[28] Jianyong Ouyang. ”Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Sensor, 34:423–436, 2013.
[29] K. Z. Xing, M. Fahlman, X. W. Chen, O. Inganas, and W. R. Salaneck. The electronic structure of poly(3,4-ethylene-dioxythiophene): studied by XPS and UPS. Synthetic Metals, 89:161–165, 1997.
[30] Oleg P. Dimitriev. Cooperative doping in polyaniline-poly(ethylene-3,4-dioxythiophene):Poly(styerenesulfonic acid) composite system. Journal of Polymer Research, 18:2435–2440, 2011.
[31] Ajeet Kaushik, Rajesh Kumar, Madhavan D. Malhotra B. K. Arya, Sunil Nair, and Shekhar Bhansali. Organic-Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chemical Reviews, 115:4571–4606, 2015.
[32] Xingfa Ma, Mang Wang, Guang Li, Hongzhen Chen, and Ru Bai. Preparation of polyaniline-TiO₂ composite film with in situ polymerization approach and its gassensitivity at room temperature. Materials Chemistry and Physics, 98:241–247, 2006.
[33] Yude D. Wang, Igor Djerdj, Markus Antonietti, and Bernd Smarsly. Polymer-Assisted Generation of Antimony-Doped SnO₂ Nanoparticles with High Crystallinity for Application in Gas Sensors. Small, 4(10):1656–1660, 2008.
[34] S. Stegmeier, M. Fleischer, A. Tawil, P. Hauptmann, K. Egly, and K. Rose. Sensing mechanism of room temperature CO₂ Sensors Based On Primary Amino Groups. Sensors and Actuators B: Chemical, 2011.
[35] Xianping Chen, Cell K. Y. Wong, Cadmus A. Yuan, and Guoqi Zhang. Impact of the functional group on the working range of polyaniline as carbon dioxide sensors. Sensors and Actuators B, 175:15–21, 2012.
[36] https://www.cdc.gov/niosh/npg/npgd0105.html retrieved at 2017/11/27.
[37] David G. Penney. Carbon Monoxide Toxicity. 2000.
[38] Peter J. Larkin. IR and Raman Spectroscopy Principles and Spectral Interpretation. Elsevier, 2011.
[39] Marc Delvaux. Chemical and Electrochemical Synthesis of Polyaniline micro- and nano-tubules. In Synthetic Metals, volume 113, pages 275–280. Elsevier, 2000.
[40] Shen Hsiung Chang, Chien-Hung Chiang, Feng-Sheng Kao, Chuen-Lin Tien, and Chun-Guey Wu. Unravelling the Enhanced Electrical Conductivity of PEDOT:PSS Thin Films for ITO-Free Organic Photovoltaics. IEEE Photonics Journal, 6(4), 2014.
[41] K. Vijayarangamuthu and Shyama Rath. Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. In Journal of Alloys and Compounds, volume 610, pages 706–712. Elsevier, 2014.
[42] A. Diéguez, A. Romano-Rodríguez, A. Vilà, and J. R. Morante. The complete Raman spectrum of nanometric SnO₂ particles. Journal of Applied Physics, 90(3), 2001.
[43] http://www.co2meters.com/documentation/datasheets/ds-gc-0010-cozirambient.pdf retrieved at 2017/11/26.
[44] http://sandboxelectronics.com/files/sen-000007/mg811.pdf retrieved at 2017/11/26.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70026-
dc.description.abstract隨著科技的演進以及物聯網(IoT) 的崛起,市場對於低製作成本以及低功耗的感測器的需求也有所成長,但市面上大多數氣體感測器為金屬氧化物或是光學式的,兩種感測器都不符合這兩個需求。另一方面有機聚合物的氣體感測器擁有較低的製造成本、較低的操作溫度以及低功耗,正好符合物聯網感測器的條件。但是它們致命的缺點為相對短壽命以及穩定性不良。為了克服壽命上的限制,我們在聚苯胺(Emeraldine Base-Polyaniline) 以及聚二氧乙基噻吩聚苯乙烯磺酸(Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) 混合而成的材料中加入了二氧化錫。並且針對新的混和材料測試二氧化碳的反應、壽命測試等相關實驗,並做進一步的討論。綜合來講參雜二氧化錫並沒有成功延長感測器使用壽命,但是參雜0.025% 二氧化錫的感測器相較於無參雜的感測器對二氧化碳有較好的反應量,例如說於濃度20000 pppm 時,0.025% 二氧化錫的反應量為20.6%,無參雜的感測器反應量只有18.9%。在應用層方面參雜二氧化席的感測器靈敏度,也代表著可以量測到氣體濃度更微小的變化。zh_TW
dc.description.abstractWith the rise of Internet of Things (IoT), the demand for low-cost and low power consuming sensors has increased, currently most commercial gas sensors are made of metal oxides or detect gases via optical methods, however they do not meet the 2 key requirements, low cost and low power consumption, essential for an IoT sensor. On the other hand organic polymer gas sensors have the advantages of relative lower manufacturing costs, lower operating temperatures usually around room temperature, hence low power consumption in comparison with other types of gas sensors. However they have the disadvantage of having a short lifetime, and poor stability. In trying to overcome the problem of short lifetime, EB-PANI and PEDOT:PSS CO₂ gas sensor is doped with tin oxide. The new nanocomposite sensor is then tested for response against CO₂, lifetime tests and other related experiments. Overall results show that doping our organic polymer did not achieve our goal of prolonging sensor lifetime, however the sensitivity of the 0.025% doped sensor towards CO₂ is higher, 20.6% at 10000 ppm, than the non-doped sensor, 18.9% at 10000 ppm. A higher sensitivity means that our sensor now is able to register the signal response change, for a smaller change in gas concentration.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:39:31Z (GMT). No. of bitstreams: 1
ntu-107-R04943176-1.pdf: 20660997 bytes, checksum: e6ec27a069b651016f037395d87d5525 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書#
誌謝i
Abstract ii
摘要iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Component and Material Introduction 5
2.1 Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Different types of CO₂ sensors . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Metal Oxide Sensors . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Carbon Nanotubes and Graphene . . . . . . . . . . . . . . . . . 10
2.2.3 Optical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Organic Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 EB-PANI/PEDOT:PSS composite . . . . . . . . . . . . . . . . . . . . . 16
2.5 Tin Oxide Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Sensor Fabrication and Measurement 20
3.1 Electrode Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Wafer Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Photo-lithography . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Metal Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Lift-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Dicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Sensing Film Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Film Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . 33
4 Results and Discussion 36
4.1 Proposed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 AC response of polymer sensor . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Sensor Response to CO₂ . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Lifetime Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Selectivity towards CO . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Material Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7.1 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.2 FTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 CO₂ Sensor Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Conclusion 66
Bibliography 67
dc.language.isoen
dc.subject二氧化碳zh_TW
dc.subject聚苯胺zh_TW
dc.subject聚二氧乙基?吩聚苯乙烯磺酸zh_TW
dc.subject二氧化錫zh_TW
dc.subjecttin oxideen
dc.subjectCO?en
dc.subjectEB-PANIen
dc.subjectPEDOT:PSSen
dc.title二氧化錫參雜對聚苯胺/聚二氧乙基噻吩聚苯乙烯磺酸
二氧化碳感測器的影響
zh_TW
dc.titleThe effect of SnO₂ blending on EB-PANI/PEDOT:PSS
CO₂ Sensor
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃念祖,呂家榮
dc.subject.keyword二氧化碳,聚苯胺,聚二氧乙基?吩聚苯乙烯磺酸,二氧化錫,zh_TW
dc.subject.keywordCO?,EB-PANI,PEDOT:PSS,tin oxide,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201800393
dc.rights.note有償授權
dc.date.accepted2018-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
20.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved