請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70025完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜憶萍(I-Ping Tu) | |
| dc.contributor.author | Meng-Hung Hsu | en |
| dc.contributor.author | 許孟弘 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:39:27Z | - |
| dc.date.available | 2019-02-23 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-08 | |
| dc.identifier.citation | [1] Achlioptas, D. (2001). Database-friendly random projections. In Proc. ACM Symp. on the Principles of Database Systems, pp. 274–281.
[2] Boutsidis, C., Zouzias, A., & Drineas, P. (2010). Random projections for k-means clustering. In Proceedings of the Conference on Neural Information Processing Systems (NIPS). [3] Drineas, P., Frieze, A., Kannan, R., Vempala, S., & Vinay, V. (2004). Clustering large graphs via the singular value decomposition. Machine Learning, 56, pp.9–33. [4] DasGupta, S. (1999). Learning mixtures of Gaussians. IEEE Symposium on Foundations of Computer Science. [5] DasGupta, S. (2000). Experiments with Random Projection. in Uncertainty in Artificial Intelligence. [6] DasGupta, S., & Gupta, A. (2003). An Elementary Proof of a Theorem of Johnson and Lindenstrauss. Random Structures and Algorithms, 22: pp. 60-65. [7] Hanson, D. L., & Wright, F. T. (1971). A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Statist., 42(3): pp.1079-1083. [8] Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics, 28: pp. 100-108. [9] Hecht-Nielsen, R. (1994). Context vectors: general purpose approximate meaning representations self-organized from raw data. Computational Intelligence: Imitating Life, IEEE Press, pp. 43-56. [10] Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mapping into Hilbert space. Contemporary Mathematics, 26: pp. 189-206. [11] Kumar, A., Sabharwal, Y., & Sen, S. (2004). A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions. In IEEE Symposium on Foundations of Computer Science (FOCS), pp. 454–462. [12] Li, P., Hastie,T. J., & Church, K. W. (2006). Very sparse random projections. In Proc. 12th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, pp. 287–296. [13] Nelson, J. (n.d.). Johnson-Lindenstrauss notes. Technical report.MIT. Retrieved January 24, 2018, from https://pdfs.semanticscholar.org/5987/5424c0bc69497aa81fd72b18610627a39358.pdf [14] Redner, R., & Walker. H. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2): pp. 195-239. [15] Sarlós, T. (2006). Improved approximation algorithms for large matrices via random projections. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 143–152. [16] Vempala, S. (2004). The Random Projection Method. American Mathematical Society, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70025 | - |
| dc.description.abstract | 隨機投影是在高維度資料分析中縮減維度的方法之一。Johnson-Lindenstrauss 引理闡述在一群高維度的資料投影進入低維度空間中,這些投影資料的相對距離可以維持得很好。換句話說,這群資料的結構沒有因為隨機投影而被破壞到。由於高斯混合模型是最基本被廣泛使用的統計模型之一,所以我們想探討高斯混合模型在隨機投影下的表現。在這篇文章中,我們顯示在某些條件下,高斯混合模型可以通過隨機投影後仍維持著保距性質。然而,投影後資料共變異矩陣特徵值的比例會比起投影前的資料變小。這也許可以解釋高維度資料降維度的分群表現變好。最後,將展示一些關於高斯混合的數值實驗。 | zh_TW |
| dc.description.abstract | Random projection is a promising dimensional reduction technique for high-dimensional data analysis. Johnson-Lindenstrauss Lemma states that a set of points in a high-dimensional space can be embedded into a space of lower dimension in such a way that distances between the points are nearly preserved. In other words, the structure of datasets is not destroyed by random projection. Besides mixtures of Gaussian are among the most fundamental and widely used statistical models. In this article, we show that when a mixtures Gaussians which are separated are projected, the projected Gaussians would be separated through random projection under some conditions. Moreover, the ratio of the eigenvalues of the covariance matrix of projected data becomes little compared with the ratio of the eigenvalues of the covariance matrix of original data. Finally, some numerical experiments with Gaussian mixtures will be illustrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:39:27Z (GMT). No. of bitstreams: 1 ntu-107-R00221033-1.pdf: 667898 bytes, checksum: ebde58ef20ab323b288cff4f997df3c5 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 演算法目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章背景介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 第二章研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1 隨機投影. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 離心率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 K-分群問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.3.1 K 平均演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.3.2 近似演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第三章實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . .18 第四章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . .20 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 附錄A:實驗matlab code . . . . . . . . . . . . . . . . . . . . . . . 23 A.1 實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 A.2 實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 A.3 實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 A.4 實驗四. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 A.5 實驗五. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 保距 | zh_TW |
| dc.subject | 隨機投影 | zh_TW |
| dc.subject | 縮減維度 | zh_TW |
| dc.subject | Johnson-Lindenstrauss 引理 | zh_TW |
| dc.subject | 高斯混合模型 | zh_TW |
| dc.subject | mixtures of Gaussians | en |
| dc.subject | random projection | en |
| dc.subject | dimension reduction | en |
| dc.subject | Johnson-Lindenstrauss Lemma | en |
| dc.title | 利用隨機投影做維度縮減以及探討高斯混合模型 | zh_TW |
| dc.title | Random Projection for Dimension Reduction and Mixture of Gaussians | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳素雲(Su-Yun Huang),陳宏(Hung Chen) | |
| dc.subject.keyword | 隨機投影,縮減維度,Johnson-Lindenstrauss 引理,高斯混合模型,保距, | zh_TW |
| dc.subject.keyword | random projection,dimension reduction,Johnson-Lindenstrauss Lemma,mixtures of Gaussians, | en |
| dc.relation.page | 28 | |
| dc.identifier.doi | 10.6342/NTU201800401 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-08 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 652.24 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
