Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李紅春(Hon-Chun Li)
dc.contributor.authorMin-Shuo Liouen
dc.contributor.author劉閔碩zh_TW
dc.date.accessioned2021-06-17T03:39:24Z-
dc.date.available2023-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-08
dc.identifier.citationAdams, G. I. (1910). Geological reconnaissance of southwestern Luzon. Bureau of printing.
Baas, P., & Vetter, R. E. (1989). Growth rings in tropical trees. IAWA bull./Intern. assoc. of wood anatomists, 10, 2.
Bhattacharyya, A., Eckstein, D., Shah, S. K., & Chaudhary, V. (2007). Analyses of climatic changes around Perambikulum, South India, based on early wood mean vessel area of teak. Current Science (00113891), 93(8).
Biondi, F., & Fessenden, J. E. (1999a). Radiocarbon analysis of Pinus lagunae tree rings: implications for tropical dendrochronology. Radiocarbon, 41(3), 241-249.
Biondi, F., & Fessenden, J. E. (1999b). Response of lodgepole pine growth to CO2 degassing at Mammoth Mountain, California. Ecology, 80(7), 2420-2426.
Borgaonkar, H. P., Sikder, A. B., Ram, S., & Pant, G. B. (2010). El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis LF) trees from south India. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1), 74-84.
Bormann, F. H., & Berlyn, G. (1980). Age and growth rate of tropical trees. New directions for research. In Proc. Workshop, Petersham, Mass (pp. 654-5).
Buckley, B. M., Barbetti, M., Watanasak, M., D'Arrigo, R., Boonchirdchoo, S., & Sarutanon, S. (1995). Dendrochronological investigations in Thailand. Iawa Journal, 16(4), 393-409.
Buckley, B. M., Duangsathaporn, K., Palakit, K., Butler, S., Syhapanya, V., & Xaybouangeun, N. (2007a). Analyses of growth rings of Pinus merkusii from Lao PDR. Forest ecology and management, 253(1), 120-127.
Buckley, B. M., Palakit, K., Duangsathaporn, K., Sanguantham, P., & Prasomsin, P. (2007b). Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors. Climate Dynamics, 29(1), 63-71.
Chakraborty, S., Dutta, K., Bhattacharyya, A., Nigam, M., Schuur, E. A., & Shah, S. K. (2008). Atmospheric 14C variability recorded in tree rings from peninsular India: Implications for fossil fuel CO2 emission and atmospheric transport. Radiocarbon, 50(3), 321-330.
Cook, E. R. (1987). The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin.
Coulthard, B. L., & Smith, D. J. (2013). Dendroglaciology.
Cutter, B. E., Eckstein, D., Sass, U., & Bass, P. (1997). Growth periodicity in tropical trees. Wood and Fiber Science, 29(3), 306.
D’Arrigo, R., Jacoby, G. C., & Krusic, P. J. (1994) Progress in Dendroclimatic studies in Indonesia. TAO 5(3):349–363
D’Arrigo, R., Abram, N., Ummenhofer, C., Palmer, J., & Mudelsee, M. (2009). Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics. Climate Dynamics, 36(3-4), 451-462.
D'Arrigo, R., Palmer, J., Ummenhofer, C. C., Kyaw, N. N., & Krusic, P. (2011). Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophysical Research Letters, 38(24).
D'Arrigo, R., Wilson, R., Palmer, J., Krusic, P., Curtis, A., Sakulich, J., Bijaksana, S., Zulaikah, S. & Ngkoimani, L. O. (2006). Monsoon drought over Java, Indonesia, during the past two centuries. Geophysical Research Letters, 33(4).
Datuin, R. T., & Troncales, A. C. (1986). Philippine geothermal resources: General geological setting and development. Geothermics, 15(5-6), 613-622.
de Boer, J., Odom, L. A., Ragland, P. C., Snider, F. G., & Tilford, N. R. (1980). The Bataan orogene: eastward subduction, tectonic rotations, and volcanism in the western Pacific (Philippines). Tectonophysics, 67(3), 251-282.
Dee, M., & Ramsey, C. B. (2000). Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1), 449-453.
Delmelle, P., & Bernard, A. (1994). Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochimica et cosmochimica acta, 58(11), 2445-2460.
Delmelle, P., & Bernard, A. (1995). Geochemical, isotopic and heat budget study of two volcano-hosted hydrothermal systems: the acid crater lakes of Kawah Ijen, Indonesia, and Taal, Philippines, volcanoes.
Delmelle, P., Kusakabe, M., Bernard, A., Fischer, T., De Brouwer, S., & Del Mundo, E. (1998). Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bulletin of volcanology, 59(8), 562-576.
Douglass, A. E. (1909). Weather cycles in the growth of big trees. Monthly Weather Review, 37(6), 225-237.
Douglass, A. E. (1914). A method of estimating rainfall by the growth of trees. Bulletin of the American Geographical Society, 46(5), 321-335.
Eckstein, D., Ogden, J., Jacoby, G. C., & Ash, J. (1981). Age and growth rate determination in tropical trees: the application of dendrochronological methods. Bulletin-Yale University, School of Forestry and Environmental Studies (USA).
Enting, I. G. (1982). Nuclear weapons data for use in carbon cycle modelling.
Fikos, I., Vargemezis, G., Zlotnicki, J., Puertollano, J. R., Alanis, P. B., Pigtain, R. C., Villacorte, E. U., Malipot, G. A., & Sasai, Y. (2012). Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bulletin of volcanology, 74(8), 1821-1831.
Förster, H., Oles, D., Knittel, U., Defant, M. J., & Torres, R. C. (1990). The Macolod Corridor: a rift crossing the Philippine island arc. Tectonophysics, 183(1-4), 265-271.
Fritts, H. C. (1976). Tree rings and climate, 567 pp. Academic, San Diego, Calif.
Fritts, H. C. (1991). Reconstructing large-scale climatic patterns from tree-ring data: t diagnostic analysis. University of Arizona Press.
Gyi, K., & Tint, K. (1998) Natural teak forest management practiced under the Myanmar selection system
Hadad, M. A., Santos, G. M., Juñent, F. A. R., & Grainger, C. S. (2015). Annual nature of the growth rings of Araucaria araucana confirmed by radiocarbon analysis. Quaternary Geochronology, 30, 42-47.
Hernández, P. A., Melián, G. V., Somoza, L., Arpa, M. C., Pérez, N. M., Bariso, E., Sumino, H., Padrón, E., Varekamp, J. C., Albert-Beltran, J. F., & Solidum, R. (2017). The acid crater lake of Taal Volcano, Philippines: hydrogeochemical and hydroacoustic data related to the 2010–11 volcanic unrest. Geological Society, London, Special Publications, 437(1), 131-152.
Hertelendi, E., & Csongor, E. (1983). Anthropogenic 14C excess in the troposphere between 1951 and 1978 measured in tree rings. Radiochemical and Radioanalytical letters, 56(2), 103-110.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton
, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S., & Zimmerman, S. R. (2013). SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon, 55(4), 1889-1903.
Hua, Q., & Barbetti, M. (2004). Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon, 46(3), 1273-1298.
Hua, Q., Barbetti, M., & Rakowski, A. Z. (2013). Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4), 2059-2072.
Hua, Q., Barbetti, M., & Zoppi, U. (2004). Radiocarbon in annual tree rings from Thailand during the pre-bomb period, AD 1938–1954. Radiocarbon, 46(2), 925-932.
Hua, Q., Barbetti, M., Jacobsen, G. E., Zoppi, U., & Lawson, E. M. (2000). Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1), 359-365.
Hua, Q., Barbetti, M., Jacobsen, G. E., Zoppi, U., & Lawson, E. M. (2000). Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1), 359-365.
Hua, Q., Barbetti, M., Levchenko, V. A., D'Arrigo, R. D., Buckley, B. M., & Smith, A. M. (2012). Monsoonal influence on southern hemisphere 14CO2. Geophysical Research Letters, 39(19).
Hua, Q., Barbetti, M., Worbes, M., Head, J., & Levchenko, V. A. (1999). Review of radiocarbon data from atmospheric and tree ring samples for the period 1945-1997 AD. Iawa Journal, 20(3), 261-283.
Hua, Q., Barbetti, M., Zoppi, U., Chapman, D. M., & Thomson, B. (2003). Bomb radiocarbon in tree rings from northern New South Wales, Australia: implications for dendrochronology, atmospheric transport, and air-sea exchange of CO2. Radiocarbon, 45(3), 431-447.
Imai, A., Listanco, E. L., & Fujii, T. (1993). Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt. Pinatubo, Philippines. Geology, 21(8), 699-702.
Kaimei, D., Youneng, Q., & Fan, C. Y. (1992). Bomb-produced 14C in tree rings. Radiocarbon, 34(3), 753-756.
Kokelaar, P. (1986). Magma-water interactions in subaqueous and emergent basaltic volcanism. Bulletin of Volcanology, 48(5), 275-289.
Kusakabe, M. (1996). Hazardous crater lakes. In Monitoring and Mitigation of Volcano Hazards (pp. 573-598). Springer Berlin Heidelberg.
Kyaw, N. N. (2003). Site influence on growth and phenotype of teak (Tectona grandis Linn. f.) in natural forests of Myanmar. Dissertation, University of Göttingen, 163 p
Lerman, J. C., Mook, W. G., Vogel, J. C., & De Waard, H. (1969). Carbon-14 in Patagonian tree rings. Science, 165(3898), 1123-1125.
Levin, I., & Hesshaimer, V. (2000). Radiocarbon–a unique tracer of global carbon cycle dynamics. Radiocarbon, 42(1), 69-80.
Levin, I., & Kromer, B. (1997). Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon, 39(2), 205-218.
Lim, J. B. R. (1983). Correlating the orientation of tectonic stresses with the flank eruptions of Taal Volcano. Philippine Journal of Volcanology, 1, 41-65.
Linacre, E., & Geerts, B. (1997). Climates and weather explained. London: Routledge.
Listanco, E. L. (1991). Some characteristics of airfall tephra from the 1991 eruption of Pinatubo Volcano, Philippines, in PROGRAMME AND ABSTRACTS THE VOLCANOLOGICAL SOCIETY OF JAPAN 1991.2 (p. 161). The Volcanological Society of Japan.
Listanco, E. L. (1994) Space–time patterns in the geologic and magmatic evolution of calderas: a case study at Taal Volcano, Philippines. PhD dissertation, University of Tokyo, Tokyo.
Livingston, B. E., & Haasis, F. W. (1933). Relations of time and maintained temperature to germination percentage for a lot of rice seed. American Journal of Botany, 596-615.
Manning, M. R., Lowe, D. C., Melhuish, W. H., Sparks, R. J., Wallace, G., Brenninkmeijer, C. A. M., & McGill, R. C. (1990). The use of radiocarbon measurements in atmospheric studies. Radiocarbon, 32(1), 37-58.
McNichol, A. P., Gagnon, A. R., Jones, G. A., & Osborne, E. A. (1992). Illumination of a black box: analysis of gas composition during graphite target preparation. Radiocarbon, 34(3), 321-329.
Meijer, H. A., van der Plicht, J., Gislefoss, J. S., & Nydal, R. (1995). Comparing Long-Term Atmospheric 14C and 3H Records Near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C Stations1. Radiocarbon, 37(1), 39-50.
Miklius, A., Flower, M. F., Huijsmans, J. P., Mukasa, S. B., & Castillo, P. (1991). Geochemistry of lavas from Taal Volcano, southwestern Luzon, Philippines: evidence for multiple magma supply systems and mantle source heterogeneity. Journal of Petrology, 32(3), 593-627.
Miyake, F., Masuda, K., & Nakamura, T. (2013). Another rapid event in the carbon-14 content of tree rings. Nature communications, 4, ncomms2783.
Moore, J. G., Nakamura, K., & Alcaraz, A. (1966). The 1965 eruption of Taal volcano. Science, 151(3713), 955-960.
Moore, J. G., Nakamura, K., & Alcaraz, A. (1966). The September 28–30, 1965 eruption of Taal Volcano, Philippines. Bulletin Volcanologique, 29(1), 75-76.
Mukasa, S. B., Flower, M. F., & Miklius, A. (1994). The Nd-, Sr-and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: implications for arc magma petrogenesis. Tectonophysics, 235(1), 205-221.
Muraki, Y., Kocharov, G., Nishiyama, T., Naruse, Y., Murata, T., Masuda, K., & Arslanov, K. A. (1997). The new Nagoya radiocarbon laboratory. Radiocarbon, 40(1), 177-182.
Murphy, J. O., Lawson, E. M., Fink, D., Hotchkis, M. A. C., Hua, Q., Jacobsen, G. E., Smith, A. M., & Tuniz, C. (1997). 14C AMS measurements of the bomb pulse in N-and S-Hemisphere tropical trees. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 123(1-4), 447-450.
Newhall, C. G., & Dzurisin, D. (1988). Historical unrest at the large calderas of the world (No. 1855). Department of the Interior, US Geological Survey.
Nydal, R., & Lövseth, K. (1996). Carbon-14 measurements in atmospheric CO2 from northern and southern hemisphere sites, 1962-1993 (No. ORNL/CDIAC--93; NDP--057). Oak Ridge National Lab., TN (United States); Oak Ridge Inst. for Science and Education, TN (United States).
Ognibene, T. J., Bench, G., Vogel, J. S., Peaslee, G. F., & Murov, S. (2003). A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Analytical chemistry, 75(9), 2192-2196.
Olsson, I. U. (1986). A study of errors in 14 C dates of peat and sediment. Radiocarbon, 28(2A), 429-435.
Perez, T., Enriquez, E. E., Guerrero III, R. D., Simon, D., & Schiemer, F. (2008). Catchment characteristics, hydrology, limnology and socio-economic features of Lake Taal, Philippines. Aquatic Ecosystems and Development: Comparative Asian Perspectives. Biology of Inland Waters Series. Backhuys Publishers, Leiden, 63-80.
Pumijumnong, N., Eckstein, D., & Sass, U. (1995b) Reconstruction of rainfall in northern Thailand from tree-ring series of teak. IGBPPAGES/PEP-II Symposium on Paleoclimate and environment variability in Austral-Asian transect during the past 2000 years, Nov 28–Dec 1, 1995, Nagoya Japan, pp 186–191
Pumijumnong, N. (2013). Dendrochronology in Southeast Asia. Trees, 27(2), 343-358.
Pumijumnong, N., Eckstein, D., & Park, W. K. (2001). Teak tree-ring chronologies in Myanmar—a first attempt.
Pumijumnong, N., Eckstein, D., & Sass, U. (1995a). Tree-ring research on Tectona grandis in northern Thailand. Iawa Journal, 16(4), 385-392.
Rakowski, A. Z., Nadeau, M. J., Nakamura, T., Pazdur, A., Pawełczyk, S., & Piotrowska, N. (2013). Radiocarbon method in environmental monitoring of CO2 emission. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 503-507.
Ram, S., Borgaonkar, H. P., & Sikder, A. B. (2008). Tree-ring analysis of teak (Tectona grandis LF) in central India and its relationship with rainfall and moisture index. Journal of earth system science, 117(5), 637-645.
Ramos, E. G. (1986). Bathymetry Map of Taal Main Crater Lake. PHIVOLCS internal map.
Ramos, E. G. (1986). Lakeshore landslides: unrecognized hazards around Taal volcano. Phil J Volcanol, 3, 28-53.
Ramos, E. G. (2001). Geomorphic features of Taal volcano. J Geol Soc Phil, 56(3-4), 105-124.
Rao, K. S., & Dave, Y. S. (1981). Seasonal variations in the cambial anatomy of Tectona grandis (Verbenaceae). Nordic Journal of Botany, 1(4), 535-542.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S., & van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869-1887.
Reimer, P. J., Brown, T. A., & Reimer, R. W. (2004). Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon, 46(3), 1299-1304.
Reimer, P. J., Brown, T. A., & Reimer, R. W. (2004). Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon, 46(3), 1299-1304.
Rozendaal, D., Brienen, R. J., Soliz‐Gamboa, C. C., & Zuidema, P. A. (2010). Tropical tree rings reveal preferential survival of fast‐growing juveniles and increased juvenile growth rates over time. New Phytologist, 185(3), 759-769.
Schweingruber, F. H. (2007). Wood structure and environment. Springer Science & Business Media.
Semper, C. (1869). Die Philippinen und ihre Bewohner: Sechs Skizzen. Stuber.
Shah, S. K., Bhattacharyya, A., & Chaudhary, V. (2007). Reconstruction of June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh, India. Dendrochronologia, 25(1), 57-64.
Simkin, T., & Siebert, L. (1994) Volcanoes of the world. Geoscience Press, Tucson, pp 1–349
Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona Press.
Stallings, W. S., & Schulman, E. (1937). Some early papers on tree-rings. Tree-Ring Bulletin.
Stenström, K. E., Skog, G., Georgiadou, E., Genberg, J., & Johansson, A. (2011). A guide to radiocarbon units and calculations. Lund University, Department of Physics internal report, 1-17.
Studhalter, R. A. (1955). Tree growth. The Botanical Review, 21(1-3), 1.
Studhalter, R. A. (1956). Early history of crossdating. Tree-Ring Bulletin.
Stuiver, M., & Braziunas, T. F. (1993). Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene, 3(4), 289-305.
Stuiver, M., & Polach, H. A. (1977). Discussion reporting of 14 C data. Radiocarbon, 19(3), 355-363.
Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415-417.
Synal, H. A. (2013). Developments in accelerator mass spectrometry. International Journal of Mass Spectrometry, 349, 192-202.
Tassi, F., Vaselli, O., Fernandez, E., Duarte, E., Martinez, M., Huertas, A. D., & Bergamaschi, F. (2009). Morphological and geochemical features of crater lakes in Costa Rica: an overview. Journal of Limnology, 68(2), 193-205.
Telegadas, K. (1971). The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. Report HASL, 243, 12-187.
Torres, R. C., Self, S., & Punongbayan, R. S. (1995). Attention focuses on Taal: Decade volcano of the Philippines. Eos, Transactions American Geophysical Union, 76(24), 241-247.
Vasquez, N. C. (1969) Thermal investigations of the Main Crater Lake of Taal Volcano. Com Vol Lett 3: 1–9
Venugopal, N., & Krishnamurthy, K. V. (1987). Seasonal production of secondary xylem in the twigs of certain tropical trees. IAWA Journal, 8(1), 31-40.
Verkouteren, R. M., & Klouda, G. A. (1992). Factorial design techniques applied to optimization of AMS graphite target preparation. Radiocarbon, 34(3), 335-343.
Verkouteren, R. M., Klinedinst, D. B., & Currie, L. A. (1997). Iron-manganese system for preparation of radiocarbon AMS targets: Characterization of procedural chemical-isotopic blanks and fractionation. Radiocarbon, 39(3), 269-283.
Vogel, J. S. (1992). Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 34(3), 344-350.
Wolfe, J. A., & Self, S. (1983). Structural lineaments and Neogene volcanism in southwestern Luzon. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 157-172.
Worbes, M. (2002). One hundred years of tree-ring research in the tropics–a brief history and an outlook to future challenges. Dendrochronologia, 20(1), 217-231.
Worcester, D. C. (1912). Taal Volcano and its recent destructive eruption. National Geographic Society.
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., & Liu, J. C. (2007). Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 320-329.
Yamada, Y., Yasuike, K., & Komura, K. (2005). Temporal variation of carbon-14 concentration in tree-ring cellulose for the recent 50 years. Journal of nuclear and radiochemical sciences, 6(2), 135-138.
Yamada, Y., Yasuike, K., & Komura, K. (2008). Relationship between Carbon-14 concentrations in tree-ring cellulose and atmospheric CO2. Journal of Nuclear and Radiochemical Sciences, 9(2), 41-44.
Yang, X., North, R., & Romney, C. (2000). CMR nuclear explosion database (revision 3). Center for Monitoring Research Technical Report CMR-00/16.
Zlotnicki, J., Sasai, Y., Toutain, J. P., Villacorte, E. U., Bernard, A., Sabit, J. P., Gordon Jr, J. M., Corpuz, E. G., Harada, M., Punongbayan, J. T., Hase, H., & Nagao, T. (2009). Combined electromagnetic, geochemical and thermal surveys of Taal volcano (Philippines) during the period 2005–2006. Bulletin of Volcanology, 71(1), 29-47.
中文文獻
黃聖焜. (2013). 應用樹輪生態學方法重建臺灣中部塔塔加地區臺灣雲杉林分動態. 臺灣大學森林環境暨資源學研究所學位論文, 1-86.
蔣麗雪. (2011). 臺灣中部威氏帝杉樹輪寬變化與當地氣候及中太平洋海面溫度之關係. 臺灣大學森林環境暨資源學研究所學位論文, 1-91.
陳姿彤. (2011). 以臺灣中部雲杉樹輪重建三百年古氣候: 利用傳統樹輪及總體經驗模態分解法. 臺灣大學地質科學研究所學位論文, 1-116.
網路資料
http://factsanddetails.com/southeast-asia/Philippines/sub5_6h/entry-3923.html
http://www.phivolcs.dost.gov.ph/html/update_VMEPD/Volcano/VolcanoList/taal.htm
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70024-
dc.description.abstract塔奧火山(Taal Volcano)位於菲律賓中部,為世上十六個最為活躍的火山之一,自1572年以來超過30次的噴發紀錄。近年來塔奧火山仍處在活躍狀態,引發的地震、地表破裂及新的熱泉不斷生成,加上在湖岸周圍密集人口活動,監測其活動實為重要的議題。本研究藉由分析水樣、沉積物及樹木樣品全面性地了解塔奧湖系統地球化學特徵,並從中探討可用於監測塔奧火山活動的地球化學指標。
在柚木(Tectona grandis)及湖泊沉積物的AMS 14C定年結果中觀察到:(1)菲律賓地區確實記錄了1950至1970年陸上核子試爆之趨勢;(2)在全纖維素與原木結果中我們觀察到,在核爆峰值年前原木結果略高於全纖維素,反之則情況相反,此一現象為樹木在生長過程中吸收並利用大氣CO2形成自身結構時的先後順序造成些微的差異,且柚木生長為連續性生長,並未如溫帶樹種有其明顯休眠期而使此現象較為明顯;(3)從核爆曲線對比中發現目視數輪上未判識的生長輪邊界及偽輪,因此藉由碳十四定年法提升了樹輪年代學之精確度;(4)由沉積物中植物殘體測年看到核爆曲線之紀錄,並與柚木結果比對,將其深度與年代對應,推得此120 cm長之岩心約有60年之沉積,推估其線性沉積為2.04 cm/yr,獲得此岩心之年代序列。從Taal湖水樣及表層沉積物分析結果觀察到:(1)元素分析中Fe、Mn、Cu、Zn、Ba或能作為指示火山活動的指標;(2)同位素分析結果觀察到塔奧湖系統為地熱流體、天水及海水三者的混合結果。最後分析重力岩心之稀酸可溶相中元素特徵並搭配其年代資料,對比1940至2006間已知且規模較大的歷史噴發紀錄,對比結果顯示,稀酸可溶相中Fe、Mn、Cu、K、Ba這五項元素在歷史事件中有較為明顯的異常紀錄,或能作為火山活動之指標。
在AMS碳十四定年分析中提升了樹木年代學之精確度,並填補了菲律賓地區樹輪年代學之空白,提供了高解析度的年代資料做後續發展。在利用大氣核爆14C作為近代湖泊沉積岩心定年的方法尚屬首次嘗試,能夠給予較為可信的岩心年代。現階段成果中觀察到五種元素或能作為塔奧火山活動之地球化學指標,然而對於上述指標在反映火山活動的靈敏度並未著墨,因此仍需更進一步的研究作探討。
zh_TW
dc.description.abstractTaal Volcano is an active volcano in the Philippines and is one of the 16 monitored volcanoes by the Global Volcanism Network in the world. Historic documents show that the volcanic eruption of Taal has been more than 30 times since 1572 C.E.. In this study, we attempt to find out geochemical proxies of volcanic eruption and to reconstruct volcanic activities recorded in the Taal Lake sediments during the past 60 years. In order to demonstrate the nuclear bomb 14C curve in the studying area, we attempt to reconstruct the nuclear bomb 14C curve in nearby tree rings and Taal Lake sediments.
The AMS 14C dating on tree rings of Tectona grandis taken near the Taal Lake in 2011 and a 120-cm long gravity core (Core TLS-2) retrieved from 15-m water depth of Taal Lake indicates that: 1) The nuclear bomb 14C pulse recorded in the Tectona grandis growth rings is the same as other published tree-ring records in the tropical regions. 2) The 14C values of the holocellulose were higher than these of whole wood from the same rings when the atmospheric bomb 14C was rising (1956-65 C.E.); but the situation was reversed when the atmospheric bomb 14C was dropping quickly after 1965 C.E.. This is because the holocellulose in the tree was formed in the early season and the whole wood was developed in the entire year. 3) By comparing the 14C curve of the tree ring with the atmospheric bomb 14C curve, we found a fake ring and three missing rings in the tree ring counting, which helped the tree ring chronology. 4) AMS 14C dates on plant remains at different layers of the core show that the nuclear bomb 14C pulse was recorded in the sediments of Core TLS-2, but the magnitude of 14C values is lower than that of the tree-ring record due to mixing and dilution effects. 5) The comparison of the bomb 14C curves between the tree ring record and a Taal Lake sediment core TLS-2 allows us to build up the chronology of the 120-cm long Core TLS-2 which has an average sedimentation rate of 2.04 cm/yr.
Investigations on the water and modern sediment samples of Taal Lake show that: 1) Fe, Mn, Cu and Zn may be used as indicators of volcanic activity. 2) Isotopic composition of Taal Lake bias from MWL indicates mixing of isotopically heavy geothermal fluid and isotopically light surface input. 3) For Core TLS-2, the δ18O and δ13C of Total Inorganic Carbon (TIC) co-vary in general. 4) The anomalies of high concentrations of Fe, Mn, Cu, K, Ba in the acid-leachable phase around 1991-1994 may correspond to high activity of Taal Volcano during this interval. These proxies may be considered as indicators of geochemically monitoring volcanic activity for long-term prediction.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:39:24Z (GMT). No. of bitstreams: 1
ntu-107-R03224205-1.pdf: 9150443 bytes, checksum: b8b9c7525388233c172eb48a75bb831f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 II
致謝 III
摘要 V
Abstract VI
第一章 緒論 1
1.1 緣起 1
1.2 研究動機及目的 1
第二章 分析方法及原理 3
2.1 14C定年法 3
2.1.1 定年原理 3
2.1.2 影響因子 3
2.2 樹木生長與樹輪年代學(Dendrochronology) 10
2.2.1 樹輪之結構 10
2.2.2 樹輪年代學(Dendrochronology) 11
2.2.3 輪寬量測 16
第三章 研究區域 18
3.1 區域背景 18
3.1.1 地理背景 18
3.1.2 氣候 18
3.1.3 水文 18
3.1.4 構造背景 22
3.1.5 噴發歷史 22
3.2 前人研究 26
3.2.1 塔奧湖(Lake Taal)系統地球化學特徵 26
3.2.2 14C定年法於樹輪年代學之應用 35
第四章 材料與方法 41
4.1 採樣地點及時間 41
4.2 採樣及分析方法 47
第五章 結果與討論 52
5.1 塔奧湖系統水樣之地球化學及同位素特徵 52
5.1.1 水體性質 52
5.1.2 元素分析 54
5.1.3 同位素分析 60
5.2 樹輪碳十四年代結果及區域性變化 61
5.2.1 目視定年結果 61
5.2.2 AMS 14C定年結果 62
5.3 沉積物岩心年代序列及地球化學特徵。 75
5.3.1 AMS 14C定年結果 75
5.3.2 岩心基本性質與地球化學及同位素特徵量測 79
第六章 結論 85
參考文獻 86
附錄一 塔奧湖水樣元素分析結果 95
附錄二 柚木EW向AMS 14C分析結果 98
附錄三 柚木NS向AMS 14C分析結果 102
附錄四 塔奧湖沉積物元素分析結果 105
dc.language.isozh-TW
dc.subject地球化學zh_TW
dc.subject碳十四定年法zh_TW
dc.subject柚木zh_TW
dc.subject湖泊沉積物zh_TW
dc.subject塔奧火山zh_TW
dc.subjectStable isotopesen
dc.subjectRadiocarbon datingen
dc.subjectDendrochronologyen
dc.subjectTaal Volcanoen
dc.subjectVolcanic activityen
dc.subjectGeochemistryen
dc.title菲律賓中部樹輪及塔奧湖岩心AMS 14C 定年及地球化學研究zh_TW
dc.titleAMS 14C dating and geochemical study on tree-ring and Taal Lake sediments in Central Philippinesen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee宋聖榮,米泓生,陳惠芬
dc.subject.keyword塔奧火山,地球化學,碳十四定年法,柚木,湖泊沉積物,zh_TW
dc.subject.keywordGeochemistry,Stable isotopes,Radiocarbon dating,Dendrochronology,Taal Volcano,Volcanic activity,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201800404
dc.rights.note有償授權
dc.date.accepted2018-02-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
8.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved