請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70021完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平(Yi-Ping Jung) | |
| dc.contributor.author | Yu-Ping Jang | en |
| dc.contributor.author | 張鈺苹 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:39:15Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-08 | |
| dc.identifier.citation | [1] Come over here: How illusion can bring the future into the present. http://jamietelford.com/come-over-here-how-illusion-can-bring-the-future-into-the-present/
[2] Fernandes, A. S., & Feiner, S. K. (2016, March). Combating VR sickness through subtle dynamic field-of-view modification. In 3D User Interfaces (3DUI), 2016 IEEE Symposium on (pp. 201-210). IEEE. [3] Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: the sufficiency of visual information. Psychological research, 71(3), 298-313. [4] 3D User Interface for VR https://www.slideshare.net/marknb00/comp-4010-lecture-4-3d-user-interfaces-for-vr [5] Boletsis, C. (2017). The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology. Multimodal Technologies and Interaction, 1(4), 24. [6] Slater, M., & Usoh, M. (1994). Body centred interaction in immersive virtual environments. Artificial life and virtual reality, 1(1994), 125-148. [7] Bowman, D. A., Davis, E. T., Hodges, L. F., & Badre, A. N. (1999). Maintaining spatial orientation during travel in an immersive virtual environment. Presence, 8(6), 618-631. [8] Lappe, M., Bremmer, F., & Van den Berg, A. V. (1999). Perception of self-motion from visual flow. Trends in cognitive sciences, 3(9), 329-336. [9] Bonato, F., Bubka, A., Palmisano, S., Phillip, D., & Moreno, G. (2008). Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments, 17(3), 283-292. [10] Darken, R. P., Cockayne, W. R., & Carmein, D. (1997, October). The omni-directional treadmill: a locomotion device for virtual worlds. In Proceedings of the 10th annual ACM symposium on User interface software and technology (pp. 213-221). ACM. [11] KAT WALK https://www.kickstarter.com/projects/katvr/kat-walk-a-new-virtual-reality-locomotion-device [12] Medina, E., Fruland, R., & Weghorst, S. (2008, September). Virtusphere: Walking in a human size VR “hamster ball”. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 52, No. 27, pp. 2102-2106). Sage CA: Los Angeles, CA: SAGE Publications. [13] Bhandari, J., Tregillus, S., & Folmer, E. (2017, November). Legomotion: scalable walking-based virtual locomotion. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology (p. 18). ACM. [14] Suma, Evan A., et al. 'Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture.' IEEE Transactions on Visualization and Computer Graphics 18.4 (2012): 555-564 [15] Vasylevska, Khrystyna, et al. 'Flexible spaces: Dynamic layout generation for infinite walking in virtual environments.' 3D User Interfaces (3DUI), 2013 IEEE 51 Symposium on. IEEE, 2013. [16] Vasylevska, K., & Kaufmann, H. (2017). Compressing VR: Fitting Large Virtual Environments within Limited Physical Space. IEEE computer graphics and applications, 37(5), 85-91. [17] Paris, R. A., McNamara, T. P., Rieser, J. J., & Bodenheimer, B. (2017, March). A comparison of methods for navigation and wayfinding in large virtual environments using walking. In Virtual Reality (VR), 2017 IEEE (pp. 261-262). IEEE. [18] Ferracani, A., Pezzatini, D., Bianchini, J., Biscini, G., & Del Bimbo, A. (2016, October). Locomotion by natural gestures for immersive virtual environments. In Proceedings of the 1st International Workshop on Multimedia Alternate Realities (pp. 21-24). ACM. [19] Yan, Z., Lindeman, R. W., & Dey, A. (2016, March). Let your fingers do the walking: A unified approach for efficient short-, medium-, and long-distance travel in VR. In 3D User Interfaces (3DUI), 2016 IEEE Symposium on (pp. 27-30). IEEE. [20] Cardoso, J. (2016, November). Comparison of gesture, gamepad, and gaze-based locomotion for VR worlds. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (pp. 319-320). ACM. [21] Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016, October). Locomotion in Virtual Reality for Individuals with Autism Spectrum Disorder. In Proceedings of the 2016 Symposium on Spatial User Interaction (pp. 33-42). ACM. [22] Keshavarz, B. (2016, July). Exploring behavioral methods to reduce visually induced motion sickness in virtual environments. In International Conference on Virtual, Augmented and Mixed Reality (pp. 147-155). Springer, Cham. [23] Bowman, D., Kruijff, E., LaViola Jr, J. J., & Poupyrev, I. P. (2004). 3D User interfaces: theory and practice, CourseSmart eTextbook. Addison-Wesley. [24] Ubisoft, “Eagle Flight,” October 2016, https://www.ubisoft.com/en-us/game/eagle-flight/ [25] Marchal, M., Pettré, J., & Lécuyer, A. (2011, March). Joyman: A human-scale joystick for navigating in virtual worlds. In 3D User Interfaces (3DUI), 2011 IEEE Symposium on (pp. 19-26). IEEE. [26] Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017, March). Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In 3D User Interfaces (3DUI), 2017 IEEE Symposium on (pp. 73-82). IEEE. [27] Pausch, R., Snoddy, J., Taylor, R., Watson, S., & Haseltine, E. (1996, August). Disney's Aladdin: first steps toward storytelling in virtual reality. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 193-203). ACM. [28] Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016, October). Point & teleport locomotion technique for virtual reality. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (pp. 205-216). ACM. [29] Christou, C. G., & Aristidou, P. (2017, June). Steering Versus Teleport Locomotion for Head Mounted Displays. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics (pp. 431-446). Springer, Cham. [30] Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73. [31] Ranxiao Frances Wang, “Spatial updating”, Scholarpedia, 2(10):3839. (2007) http://www.scholarpedia.org/article/Spatial_updating [32] Legge, G. E., Gage, R., Baek, Y., & Bochsler, T. M. (2016). Indoor spatial updating with reduced visual information. PloS one, 11(3), e0150708. [33] Nguyen-Vo, T., Riecke, B. E., & Stuerzlinger, W. (2017, March). Moving in a box: Improving spatial orientation in virtual reality using simulated reference frames. In 3D User Interfaces (3DUI), 2017 IEEE Symposium on (pp. 207-208). IEEE. [34] Legge, G. E., Gage, R., Baek, Y., & Bochsler, T. M. (2016). Indoor spatial updating with reduced visual information. PloS one, 11(3), e0150708. [35] Redlick, F. P., Jenkin, M., & Harris, L. R. (2001). Humans can use optic flow to estimate distance of travel. Vision research, 41(2), 213-219. [36] Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675-689. [37] Bowman, D. A., Koller, D., & Hodges, L. F. (1997, March). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Virtual Reality Annual International Symposium, 1997., IEEE 1997 (pp. 45-52). IEEE. [38] Golledge, R. G. (Ed.). (1999). Wayfinding behavior: Cognitive mapping and other spatial processes. JHU press. [39] 蔡思涵. (2012). 移動方式與空間能力對於玩家尋路行為與空間知識建構之影響. 清華大學資訊系統與應用研究所學位論文, 1-180. [40] Teleporting in Virtual Worlds while Learning Real World Places Shawn Kerns, Daniel Cliburn and Michael O'Rourke, ICAT 2010 [41] Darken et al., 'Wayfinding strategies and behaviors in large virtual worlds.' Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 1996. [42] Bolte, B., Steinicke, F., & Bruder, G. (2011). The jumper metaphor: an effective navigation technique for immersive display setups. In Proceedings of Virtual Reality International Conference. [43] Han, P. H., Huang, D. Y., Tsai, H. R., Chen, P. C., Hsieh, C. H., Lu, K. Y., ... & Hung, Y. P. (2015, July). Moving around in virtual space with spider silk. In ACM SIGGRAPH 2015 Emerging Technologies (p. 19). ACM. [44] Medeiros, D., Cordeiro, E., Mendes, D., Sousa, M., Raposo, A., Ferreira, A., & Jorge, J. (2016, November). Effects of speed and transitions on target-based travel techniques. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (pp. 327-328). ACM. [45] Bruder, G., Steinicke, F., & Hinrichs, K. H. (2009, March). Arch-explore: A natural user interface for immersive architectural walkthroughs. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on (pp. 75-82). IEEE. [46] LaViola Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1), 47-56. [47] Virtual reality sickness https://en.wikipedia.org/wiki/Virtual_reality_sickness [48] Cybersickness http://w3.uqo.ca/cyberpsy/en/cyberma_en.htm [49] McCauley, Michael E., and Thomas J. Sharkey. 'Cybersickness: Perception of self-motion in virtual environments.' Presence: Teleoperators & Virtual Environments 1.3 (1992): 311-318. [50] Kennedy, Robert S., et al. 'Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness.' The international journal of aviation psychology 3.3 (1993): 203-220. [51] Riccio, Gary E., and Thomas A. Stoffregen. 'An ecological theory of motion sickness and postural instability.' Ecological psychology 3.3 (1991): 195-240. [52] Treisman, Michel. 'Motion sickness: an evolutionary hypothesis.' Science 197.4302 (1977): 493-495. [53] Reason, James T., and Joseph John Brand. Motion sickness. Academic press, 1975. [54] Keshavarz, B., & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied ergonomics, 45(3), 521-527. [55] Keshavarz, B., Stelzmann, D., Paillard, A., & Hecht, H. (2015). Visually induced motion sickness can be alleviated by pleasant odors. Experimental brain research, 233(5), 1353-1364. [56] D’Amour, S., Bos, J. E., & Keshavarz, B. (2017). The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental brain research, 235(9), 2811-2820. [57] Onuki, Y., Ono, S., & Kumazawa, I. (2017, March). Air cushion: A pilot study of the passive technique to mitigate simulator sickness by responding to vection. In Virtual Reality (VR), 2017 IEEE (pp. 323-324). IEEE. [58] Dorado, J. L., & Figueroa, P. A. (2014, March). Ramps are better than stairs to reduce cybersickness in applications based on a HMD and a gamepad. In 3D User Interfaces (3DUI), 2014 IEEE Symposium on (pp. 47-50). IEEE. [59] Sawabe, T., Kanbara, M., & Hagita, N. (2017, March). Diminished reality for acceleration stimulus: Motion sickness reduction with vection for autonomous driving. In Virtual Reality (VR), 2017 IEEE (pp. 277-278). IEEE. [60] Tsai, L. (2017). 在有限的實體空間內以奇幻式移動探索大範圍的虛擬空間. 臺灣大學資訊工程學研究所學位論文, 1-54. [61] Optical flow: https://en.wikipedia.org/wiki/Optical_flow [62] Warren, W. H., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336(6195), 162-163. [63] Royden, C. S., & Moore, K. D. (2012). Use of speed cues in the detection of moving objects by moving observers. Vision research, 59, 17-24. [64] Lee, J. Y., Han, P. H., Tsai, L., Peng, R. D., Chen, Y. S., Chen, K. W., & Hung, Y. P. (2017, November). Estimating the simulator sickness in immersive virtual reality with optical flow analysis. In SIGGRAPH Asia 2017 Posters (p. 16). ACM. [65] Oculus, “Oculus Best Practices,” https://developer.oculus.com/design/latest/concepts/book-bp/ [66] Google, “Design for Google Cardboard,” https://designguidelines.withgoogle.com/cardboard/designing-for-google-cardboard/ [67] So, R. H., Lo, W. T., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human Factors, 43(3), 452-461. [68] Pokémon shock, https://en.wikipedia.org/wiki/Denn%C5%8D_Senshi_Porygon [69] Wormhole, https://en.wikipedia.org/wiki/Wormhole [70] Farnebäck, G. (2003, June). Two-frame motion estimation based on polynomial expansion. In Scandinavian conference on Image analysis (pp. 363-370). Springer, Berlin, Heidelberg. [71] Kennedy, R. S., Drexler, J. M., Compton, D. E., Stanney, K. M., Lanham, D. S., & Harm, D. L. (2003). Configural Scoring of Simulator Sickness, Cybersickness and Space Adaptation Syndrome: Similarities and Differences. Virtual and adaptive environments: Applications, implications, and human performance issues, 247. [72] Polylised - Medieval Desert City, https://assetstore.unity.com/packages/3d/environments/historic/polylised-medieval-desert-city-94557 [73] Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. [74] Münzer, S., Fehringer, B. C., & Kühl, T. (2016). Validation of a 3-factor structure of spatial strategies and relations to possession and usage of navigational aids. Journal of Environmental Psychology, 47, 66-78. [75] Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225-240. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70021 | - |
| dc.description.abstract | 當用戶在身臨其境的虛擬環境中遊覽時,暈眩(暈動症)容易影響使用者的VR體驗。由虛擬運動引起的強烈光流可能使用戶感覺不舒服。因此,減少光流可以在一定程度上減輕VR疾病。很多現代的虛擬現實應用都使用瞬間隱形傳送來減少用戶的不適。此外利用FOV限制器來減少用戶的周邊視覺接收的光流量,以減輕使用者的暈眩。但是,減小FOV會降低空間的更新性能。另外,瞬間傳送容易中斷用戶的沉浸感、干擾空間信息的收集和使用戶的迷失方向。因此,我們提出一種保留用戶空間感知的方法,為用戶提供一個舒適、身臨其境的體驗。我們在虛擬環境中採用額外的空間結構 --- 由多個傳送門構建而成的隧道,通過減少周邊視覺的光流,為使用者提供沉浸感和保留空間信息,以及減輕使用者的暈眩情況。我們進行了三項使用者實驗。在實驗1中,我們調整每個傳送門的厚度比率以讓使用者可以在隧道中舒適地移動。在實驗2中,我們希望找到隧道亮度與使用者偏好之間的關係,同時調整隧道的透明度,讓使用者在隧道內移動時感覺舒適。在最後的實驗中,我們根據使用者的舒適度、空間定向以及空間信息收集的性能比較隧道傳送與瞬間傳送。我們建議VR開發人員可以使用隧道傳送來提供一個舒適,身臨其境的體驗。 | zh_TW |
| dc.description.abstract | The Virtual Reality (VR) sickness is a crucial issue when the users move in immersive virtual environments. The intense optical flow caused by virtual movements could make the users feel uncomfortable. Accordingly, many works and literature have worked on reducing the optical flow to alleviate the VR sickness. A lot of modern VR applications use blink teleportation [1] to hide the translation or a FOV restrictor [2] to decrease the users’ the optical flow of peripheral vision. However, blink translation can interrupt the users’ immersion, interference the spatial information gathering and lead to disorientation. On top of that, reducing the FOV will decrease spatial updating performance [3]. Therefore, we employ an additional spatial structure, a tunnel constructed by many portals, to retain users’ spatial awareness and offer a comfortable and immersive experience to the users. Three user studies are conducted for a well-designed tunnel used in our experimental virtual environment. In study 1, the thickness ratio parameter of each portal is adjusted to let users move comfortably. In study 2, we want to find the relationship between the brightness of the tunnel and the users’ preference, and the transparency of the tunnel is also adjusted to let users feel comfortable when moving in the tunnel. In the final study, we compare the tunneling teleportation with the blink teleportation based on the users’ comfort and the performance of the spatial orientation and the spatial information gathering. We suggest that VR developers can employ the tunneling teleportation to provide a comfortable and immersive experience. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:39:15Z (GMT). No. of bitstreams: 1 ntu-107-R04944053-1.pdf: 2529050 bytes, checksum: b8169bb0a93571a93dce9b0c0ea543b7 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Navigating in virtual environments 3 2.1.1 Physical locomotion techniques 3 2.1.2 Artificial locomotion techniques 4 2.2 Spatial Navigation and Spatial Updating 6 2.3 Cybersickness 8 Chapter 3 Design considerations 11 3.1 Optical flow 11 3.2 Brightness 12 3.3 Flicker 12 3.4 Spatial information gathering 13 Chapter 4 Design 14 4.1 The structure of the tunneling teleportation 14 4.2 The parameters of the tunnel 15 4.3 The obstacles in the translation path 16 Chapter 5 Implementation 18 5.1 System overview 18 5.2 Hardware configuration 18 5.3 Software implementation 19 5.3.1 Tunneling teleportation 20 5.3.2 Blink teleportation 22 Chapter 6 User Study 23 6.1 User Study 1 24 6.1.1 Study design 24 6.1.2 Optical flow analysis 25 6.1.3 Participants 26 6.1.4 Procedures 26 6.1.5 Task of the study 27 6.1.6 Post-exposure questionnaire 28 6.1.7 Result 28 6.1.8 Discussion 32 6.2 User Study 2 32 6.2.1 Study design 33 6.2.2 Participants 34 6.2.3 Procedure 34 6.2.4 Post-exposure questionnaire 34 6.2.5 Result 35 6.2.6 Discussion 37 6.3 User Study 3 39 6.3.1 Study design 40 6.3.2 Scenarios 41 6.3.3 Participants 42 6.3.4 Procedures 43 6.3.5 Santa Barbara Sense-Of-Direction Scale [73] 44 6.3.6 Post-exposure questionnaire 44 6.3.7 Result 46 6.3.8 Discussion 51 Chapter 7 Conclusion and Future Work 53 REFERENCES 54 | |
| dc.language.iso | en | |
| dc.subject | 空間定向 | zh_TW |
| dc.subject | 瞬移 | zh_TW |
| dc.subject | 虛擬實境之暈動症 | zh_TW |
| dc.subject | 沉浸式虛擬實境之移動 | zh_TW |
| dc.subject | Immersive VR Locomotion | en |
| dc.subject | Cybersickness | en |
| dc.subject | Teleportation | en |
| dc.subject | Spatial orientation | en |
| dc.title | 利用隧道式傳送門進行虛擬環境中之移動 | zh_TW |
| dc.title | Tunneling Teleportation for Navigation in Virtual Environments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祝嵩,陳永昇(Yong-Sheng Chen),簡拉卡(R.P.C. Janaka Rajapakse),陳冠文(Kuan-Wen Chen) | |
| dc.subject.keyword | 沉浸式虛擬實境之移動,虛擬實境之暈動症,瞬移,空間定向, | zh_TW |
| dc.subject.keyword | Immersive VR Locomotion,Cybersickness,Teleportation,Spatial orientation, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU201800417 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
