請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
dc.contributor.author | Jian-Syuan Huang | en |
dc.contributor.author | 黃建軒 | zh_TW |
dc.date.accessioned | 2021-06-17T03:39:03Z | - |
dc.date.available | 2019-02-23 | |
dc.date.copyright | 2018-02-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-09 | |
dc.identifier.citation | [1]hiSky Website at http://www.hiskysat.com/#home
[2]L. Marcellini, R. Lo Forti, and G. Bellaveglia, “Future developments trend for Ku and Ka antenna for satcom on the move,” in Proc. 5th Europe Conference Antennas Propagation, Apr. 2011, pp. 2346–2350. [3]H. Zhou and F. Aryanfar, 'A planar Ka-band phased array with configurable polarizations,' 2013 IEEE Antennas and Propagation Society International Symposium (APS), Orlando, FL, pp. 1638-1639, Jan. 2013. [4]A. Chen, Y. Zhang, Z. Chen, and C. Yang, “Development of a Ka-band wideband circularly polarized 64-element microstrip antenna array with double application of the sequential rotation feeding technique,” IEEE Antennas Wireless Propagation Letter, vol. 10, pp. 1270–1273, Oct. 2011. [5]Aixin Chen, Chuo Yang, Zhizhang Chen, Yanjun Zhang, and Yingyi He, “Design of multilevel sequential rotation feeding networks used for circularly polarized microstrip antenna arrays,” International Journal of Antennas and Propagation, vol. 2012, Article ID 304816, 10 pages, July 2012. [6]Daniele Inserra, Wei Hu, and Guangjun Wen, “Design of a microstrip series power divider for sequentially rotated nonuniform antenna array,” International Journal of Antennas and Propagation, vol. 2017, Article ID 9482979, 8 pages, 2017. [7]A. Garcia-Aguilar, J. M. Inclan-Alonso, L. Vigil-Herrero, J. M. Fernandez-Gonzalez and M. Sierra-Perez, 'Low-profile dual circularly polarized antenna array for satellite communications in the X band,' in IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2276-2284, May 2012. [8]S. Mener, R. Gillard and L. Roy, 'A dual-band dual-circular-polarization antenna for Ka-band satellite communications,' IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 274-277, May 2017. [9]Y. J. Chi and F. C. Chen, '60-GHz polarization-adjustable antenna arrays,' IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 2887-2894, July 2015. [10]H. Al-Saedi, J. K. Ali, W. M. Abdel-Wahab, S. Gigoyan and S. Safavi-Naeini, 'A dual circularly polarized patch antenna for broadband millimeter wave (MMW) communication systems,' 2016 IEEE International Symposium on Antennas and Propagation (APS), Fajardo, pp. 593-594, Oct. 2016. [11]R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Boston, MA, USA: Artech House, 2001. [12]J. D. Kraus and R. J. Marhefka, “Antenna For All Applications,” 3rd edition, McGraw-Hill Compaines, Inc., 2002. [13]J. Q. Howell, 'Microstrip antennas,' IEEE Transactions on Antennas and Propagation, vol. AP-23, pp. 90-93, Jan. 1975. [14]Y. T. Lo and W. F. Richards, 'A perturbation approach to the design of circularly polarized microstrip antennas,' 1981 IEEE Antenna and Propagation Society International Symposium (APS), Los Angeles, CA, USA, pp. 339-342, May 1981. [15]M. Haneishi and S. Yoshida, “A design method of circularly polarized rectangular microstrip antenna by one-point feed,” Electronics Communications in Japan, vol. 64-B, pp. 46–54, 1981. [16]H. Ghali and T. A. Moselhy, 'Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,' IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 11, pp. 2513-2520, Nov. 2004. [17]W. L. Chen and G. M. Wang, 'Exact design of novel miniaturised fractal-shaped branch-line couplers using phase-equalising method,' IET Microwaves, Antennas & Propagation, vol. 2, no. 8, pp. 773-780, Dec. 2008. [18]C. W. Tang and M. G. Chen, 'Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,' IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1926-1934, Sept. 2007. [19]J. Huang, 'A technique for an array to generate circular polarization with linearly polarized elements,' IEEE Transactions on Antennas and Propagation, vol. 34, no. 9, pp. 1113-1124, Sep. 1986. [20]P. S. Hall, 'Feed radiation effects in sequentially rotated microstrip patch arrays,' Electronics Letters, vol. 23, no. 17, pp. 877-878, Aug. 1987. [21]T. Teshirogi, M. Tanaka, and W. Chujo, “Wideband circularly polarized array antenna with sequential rotations and phase shifts of elements,” Proc. International Symposium Antenna Propagation, pp. 117-120, Aug. 1985. [22]S. K. Lin and Y. C. Lin, 'A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential-rotation arrays,' in IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2721-2724, July 2011. [23]David M. Pozar, Microwave Engineering, 4¬th edition, Jhon Wiley & Sons, 2011. [24]C. Seguinot, P. Kennis, J. F. Legier, F. Huret, E. Paleczny and L. Hayden, 'Multimode TRL. A new concept in microwave measurements: theory and experimental verification,' IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 5, pp. 536-542, May 1998. [25]B. Y. Toh, R. Cahill and V. F. Fusco, 'Understanding and measuring circular polarization,' IEEE Transactions on Education, vol. 46, no. 3, pp. 313-318, Aug. 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70017 | - |
dc.description.abstract | 本論文提出一款操作於Ka頻段之雙圓極化循序陣列天線,以碎形殘段式3 dB支路耦合器探針饋入正方形微帶平板天線完成雙圓極化天線單元,進而應用兩階層循序旋轉技巧完成縮形化雙圓極化循序陣列設計。我們重新安排了循序旋轉的順序,讓左旋及右旋圓極化的饋線不會有任何的交錯,使最後的設計只需一層電路饋線即可完成饋入。
研究成果可分成兩個部分。第一部份以多階層式單圓極化循序陣列先驗證循序旋轉技巧對於軸比頻寬拓展有顯著之成效。實體旋轉相位採0°、90°、180°及270°之構成2×2子陣列天線,配合串聯式饋入電路可完成循序陣列縮形設計之標的。 傳統設計使用兩階層循序旋轉,但天線陣列達128單元或更多天線單元之大型陣列時,每一次的向上增添輻射體數目及饋入網路所造成的不連續面多重反射,將使得遠離中心頻後於天線寬邊輻射方向上觀測之電波極化逐漸變成橢圓極化波,且交叉極化亦向上攀升並降低極化隔離度。由理論分析、全波模擬與量測結果可知,從2×2子天線陣列至128單元陣列共使用4次循序旋轉技巧,發射天線的軸比頻寬從2.96 %拓展至34.48 %,接收天線亦有相同結果,軸比頻寬從2.26 %拓展至大於34.48 %,由此證實多階層式的循序旋轉技巧確實可有效的增加軸比頻寬且維持軸比頻率響應之平坦程度。 第二部分著重於設計單層饋線之雙圓極化循序陣列天線,基於單圓極化循序陣列之良好特性,將多層式循序旋轉技巧應用至雙圓極化陣列設計,套用兩階層循序旋轉可獲得更加平坦化之軸比頻率響應。饋入設計除了單層無跨線之外,為使天線結構保有緊縮特性,本論文使用了碎形傳輸線與殘段匹配等效傳輸線完成繞線,大幅降低繞線複雜度。量測結果所得之軸比具有良好的頻寬特性。 | zh_TW |
dc.description.abstract | In this thesis, a Ka-band dual-circular polarization sequential antenna array design is proposed. The dual-circular polarization antenna element is a square microstrip patch antenna using dual probe-fed. In order to generate circular polarized wave, a compact 3 dB branch line coupler is used. Both microstrip lines with fractal design and open stub matched transmission line are applied to the propose dual-circular polarization sequential antenna array to minimize coupler size.
In generally, sequential design can be used to maintain wide-band axial ratio response. The 128 elements single polarized sequential array which has a return loss better than 10 dB in operation frequency band is realized. Besides, the antenna radiation patterns and wide axial ratio bandwidth are similar to simulation results. To maintain good axial ratio, the proposed dual-circular polarization sequential antenna array employs two-layer sequential rotation technique. A 4×4 sequential array is proposed to demonstrate single layer feeding structure for dual-circular polarization without any crossover. The measurement results show that two-layer sequential rotation can achieve good axial ratio. Due to its compact size and planar construction, the proposed dual-circular polarization sequential antenna array is suitable for mobile satellite communication. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:39:03Z (GMT). No. of bitstreams: 1 ntu-107-R04942140-1.pdf: 31290515 bytes, checksum: 148f75465fe978a51285d1cecde07cba (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xv Chapter 1 緒論 1 1.1 應用背景 1 1.2 雙圓極化天線 2 1.3 循序旋轉及雙圓極化天線陣列文獻回顧 4 1.4 完備天線設計考量 11 1.5 天線設計規格 12 1.6 論文貢獻 12 1.7 各章節介紹 13 Chapter 2 圓極化微帶平板天線 15 2.1 天線極化特性 15 2.1.1 線性極化(linear polarization) 16 2.1.2 圓極化(circular polarization) 17 2.1.3 橢圓極化(elliptical polarization) 18 2.2 圓極化微帶平板天線 20 2.3 單圓極化微帶平板天線單元設計與模擬 21 2.4 支路耦合器饋入之雙圓極化天線單元設計與模擬 25 2.4.1 微形化理論:碎形結構與殘段匹配等效傳輸線 26 2.4.2 雙圓極化天線單元 30 Chapter 3 循序旋轉陣列理論 45 3.1 循序旋轉原理與公式推演 46 3.1.1 循序旋轉理論 46 3.1.2 阻抗頻寬寬頻分析 48 3.2 循序饋入網路設計 49 3.2.1 串聯式循序饋入電路 49 3.2.2 模擬串聯式饋入電路 53 3.2.3 雙圓極化天線陣列循序饋入配置 58 Chapter 4 具循序旋轉設計之圓極化天線陣列 61 4.1 微帶傳輸線饋入之平面化循序單圓極化天線陣列 61 4.1.1 單圓極化循序陣列天線組態與設計策略 61 4.1.2 2×2子天線陣列 61 4.1.3 4×4子天線陣列 65 4.1.4 64單元子天線陣列 68 4.1.5 128單元天線陣列 70 4.1.6 單圓極化天線表現評估 73 4.2 雙圓極化之平面循序旋轉天線陣列 75 4.2.1 4×4雙圓極化循序陣列配置 75 4.2.2 1×2天線細胞 76 4.2.3 1×4子天線陣列 80 4.2.4 4×4雙圓極化天線陣列 85 4.2.5 柴比雪夫步階阻抗轉換電路 90 Chapter 5 微波基板特性參數萃取 92 5.1 傳統TRL校準理論 93 5.2 微波基板參數萃取方法 96 5.3 TL電路量測與萃取結果 99 5.4 TRL接頭校準 101 Chapter 6 量測 106 6.1 圓極化天線量測方法 106 6.2 量測環境 108 6.3 單圓極化天線量測 110 6.3.1 反射係數與軸比量測 110 6.3.2 天線場型量測 119 6.4 雙圓極化天線量測 136 6.4.1 反射係數量測與軸比量測 136 6.4.2 天線場型量測 140 Chapter 7 結論與未來展望 153 參考文獻 156 | |
dc.language.iso | zh-TW | |
dc.title | 基於循序旋轉設計之雙圓極化Ka-頻段衛星通訊收發天線陣列 | zh_TW |
dc.title | Design of dual-circular polarization antenna array using sequential rotation for Ka-band satellite communication | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾昭雄(Chao-Hsiung Tseng),陳晏笙(Yen-Sheng Chen) | |
dc.subject.keyword | 衛星通訊,Ka頻段,近似正方形微帶平板天線,雙圓極化天線陣列,循序旋轉技巧,碎形傳輸線,殘段匹配等效傳輸線,多層微波基板, | zh_TW |
dc.subject.keyword | satellite communication,Ka-band, nearly square patch antenna,dual-circular polarization antenna array,sequential rotation technique,fractal-shape transmission line,open stub matched transmission line,multi-layer substrate, | en |
dc.relation.page | 158 | |
dc.identifier.doi | 10.6342/NTU201603708 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-09 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 30.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。