請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70004
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉汀峰(Ting-Feng Yeh) | |
dc.contributor.author | Wan-Shuan Chiang | en |
dc.contributor.author | 江萬栓 | zh_TW |
dc.date.accessioned | 2021-06-17T03:38:23Z | - |
dc.date.available | 2023-03-05 | |
dc.date.copyright | 2018-03-05 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-09 | |
dc.identifier.citation | 呂錦明(2001)竹林之培育及經營管理。林業叢刊第135號。204頁。
呂錦明(2010)臺灣竹圖鑑。晨星出版社。271頁。 李培芬(2006)自然資源與生態資料庫III-農林漁牧。行政院農業委員會林務局。臺北市。215頁。 邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查成果概要。臺灣林業期刊 41:3-13。 林維治(1958)臺灣竹類生長之研究。臺灣省林業試驗所報告第54號。29頁。 劉立元(2016)麻竹稈之木質素特性與其Caffeic acid O-methyltransferase酵素動力學分析。國立臺灣大學森林暨環境資源學系碩士論文。71頁。 鄭武燦(2000)臺灣植物圖鑑(下冊)。國立編譯館主編,茂昌圖書公司發行。1987頁。 Adler, E. (1977) Lignin chemistry-past, present and future. Wood Science and Technology 11: 169-218. Bai, Y. Y., L. P. Xiao, Z. J. Shi and R. C. Sun (2013) Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. International Journal of Molecular Sciences 14: 21394-21413. Baker, S. M. (1996) Rapid methoxy analysis of lignins using gas chromatography. Holzforschung 50: 573-574. Billa, E., E. G. Koukios and B. Monties (1998) Investigation of lignins structure in cereal crops by chemical degradation methods. Polymer Degradation and Stability 59: 71-75. Bitter, T. and H. M. Muir (1962) A modified uronic acid carbazole reaction. Analytical Biochemistry 4: 330-334. Björkman, A. (1956) Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidning 59: 477-485. Blakeney, A. B., P. J. Harris, R. J. Henry and B. A. Stone (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research 113: 291-299. Boerjan, W., J. Ralph and M. Baucher (2003) Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546. Bouaziz, M., N. C. Veitch, R. J. Grayer, M. S. Simmonds and M. Damak (2002). Flavonolignans from Hyparrhenia hirta. Phytochemistry 60: 515-520. Bunzel, M., J. Ralph, P. Brüning and H. Steinhart (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. Journal of Agricultural and Food Chemistry 54: 6409-6418. Bunzel, M., J. Ralph, H. Kim, F. Lu, S. A. Ralph, J. M. Marita, R. D. Hatfield and H. Steinhart (2003) Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. Journal of Agricultural and Food Chemistry 51: 1427-1434. Capanema, E. A., M. Y. Balakshin, R. Katahira, H. M. Chang and H. Jameel (2014) How well do MWL and CEL preparations represent the whole hardwood lignin? Journal of Wood Chemistry and Technology 35: 17-26. Capanema, E. A., M. Y. Balakshin and J. F. Kadla (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. Journal of Agricultural and Food Chemistry 52: 1850-1860. Carnachan, S. M. and P. J. Harris (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochemical Systematics and Ecology 28: 865-879. Chang, C. L., G. J. Wang, L. J. Zhang, W. J. Tsai, R. Y. Chen, Y. C. Wu and Y. H. Kuo (2010) Cardiovascular protective flavonolignans and flavonoids from Calamus quiquesetinervius. Phytochemistry 71: 271-279. Chang, H. M., E. B. Cowling and W. Brown (1975) Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29: 153-159. Chang, W. J., M. J. Chang, S. T. Chang and T. F. Yeh (2013) Chemical composition and immunohistological variations of a growing bamboo shoot. Journal of Wood Chemistry and Technology 33: 144-155. Chen, C. L. (1998) Characterization of milled wood lignins and dehydrogenative polymerisates from monolignols by carbon-13 NMR spectroscopy. In 'Lignin and Lignan Biosynthesis'; ACS Symposium Series 697; American Chemical Society: Washington, DC. p255-275. Del Río, J. C., G. Marques, J. Rencoret, A. T. Martínez, , and A. Gutiérrez (2007). Occurrence of naturally acetylated lignin units. Journal of Agricultural and Food Chemistry 55: 5461-5468. Del Río, J. C., J. Rencoret, P. Prinsen, A. T. Martínez, J. Ralph and A. Gutiérrez (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry 60: 5922-5935. Dence, C. W. (1992) Detection and determination. In 'Methods in Lignin Chemistry'. Lin, S. Y., and Dence, C. W. eds. Springer: Berlin Heidelberg. p21-61. Ebringerová, A. (2005). Structural diversity and application potential of hemicelluloses. Macromolecular Symposia 232: 1-12. Ebringerová, A. and Z. Hromádková (2010) An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chemistry 8: 243-257. Fengel, D. and X. Shao (1985) Studies on the lignin of the bamboo species Phyllostachys makinoi Hay. Wood Science and Technology 19 : 131-137. Fujii, Y., J. I. Azuma, R. H. Marchessault, F. G. Morin, S. Aibara and K. Okamura (1993) Chemical composition change of bamboo accompanying its growth. Holzforschung 47: 109-115. Gellerstedt, G. (1992) Determination of molecular weight, size and distribution. In 'Methods in Lignin Chemistry'. Lin, S. Y., and Dence, C. W. eds. Springer: Berlin Heidelberg. p485-523. Grabber, J. H., J. Ralph and R. D. Hatfield (2002) Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. Journal of Agricultural and Food Chemistry 50: 6008-6016. He, J., S. Cui and S. Y. Wang (2008) Preparation and crystalline analysis of high‐grade bamboo dissolving pulp for cellulose acetate. Journal of Applied Polymer Science 107: 1029-1038. Hernanz, D., V. Nuñez, A. I. Sancho, C. B. Faulds, G. Williamson, B. Bartolomé and C. Gómez-Cordovés (2001) Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. Journal of Agricultural and Food Chemistry 49: 4884-4888. Higuchi, T., Y. Ito, M. Shimada and I. Kawamura (1967) Chemical properties of milled wood lignin of grasses. Phytochemistry 6: 1551-1556. Hu, Z., T. F. Yeh, H. M. Chang, Y. Matsumoto and J. F. Kadla (2006) Elucidation of the structure of cellulolytic enzyme lignin. Holzforschung 60: 389-397. Huang, C., J. He, L. Du, D. Min and Q. Yong (2016) Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). Journal of Wood Chemistry and Technology 36: 157-172. Itoh, T. (1990) Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung 44: 191-200. Jacquet, G., B. Pollet, C. Lapierre, F. Mhamdi and C. Rolando (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. Journal of Agricultural and Food Chemistry 43: 2746-2751. Jung, H., D. Buxton, R. Hatfield, D. Mertens, J. Ralph and P. Weimer (1996) Improving forage fiber digestibility. Feed Mix 4: 30-31. Katahira, R. and F. Nakatsubo (2001) Determination of nitrobenzene oxidation products by GC and 1H-NMR spectroscopy using 5-iodovanillin as a new internal standard. Journal of Wood Science 47: 378-382. Kim, H., D. Padmakshan, Y. Li, J. Rencoret, R. D. Hatfield and J. Ralph (2017) Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state NMR. Biomacromolecules 18: 4184-4195. Kim, H. and J. Ralph (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic & Biomolecular Chemistry 8: 576-591. Lam, T. B. T., K. Iiyama and B. A. Stone (1992) Changes in phenolic acids from internode walls of wheat and Phalaris during maturation. Phytochemistry 31: 2655-2658. Lam, T. B. T., K. Iiyama and B. A. Stone (1994) Determination of etherified hydroxycinnamic acids in cell walls of grasses. Phytochemistry 36: 773-775. Lan, W., F. Lu, M. Regner, Y. Zhu, J. Rencoret, S. A. Ralph, U. I. Zakai, K. Morreel, W. Boerjan and J. Ralph (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiology 167: 1284-1295. Lapierre, C., B. Pollet and C. Rolando (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Research on Chemical Intermediates 21: 397-412. Lewis, N. G. and E. Yamamoto (1990) Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Biology 41: 455-496. Li, M. F., S. N. Sun, F. Xu and R. C. Sun (2012) Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamus affinis): characterization of the ethanol-soluble fractions. Ultrasonics Sonochemistry 19: 243-249. Li, X., J. K. Weng and C. Chapple (2008) Improvement of biomass through lignin modification. Plant Journal 54: 569-581. Liese, W. (1987) Research on bamboo. Wood Science and Technology 21: 189-209. Lin, S. Y. (1992) Ultraviolet spectrophotometry. In 'Methods in Lignin Chemistry'. Lin, S. Y., and Dence, C. W. eds. Springer: Berlin Heidelberg. p217-286. Liu, C. and C. E. Wyman (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Industrial and Engineering Chemistry Research 42: 5409-5416. Lourenço, A., J. Rencoret, C. Chemetova, J. Gominho, A. Gutiérrez, J. C. del Río and H. Pereira (2016) Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Frontiers 7: 1612. Lu, F. and J. Ralph (1999) Detection and determination of p-coumaroylated units in lignins. Journal of Agricultural and Food Chemistry 47: 1988-1992. Lu, F. and J. Ralph (2003) Non‐degradative dissolution and acetylation of ball‐milled plant cell walls: high‐resolution solution‐state NMR. Plant Journal 35: 535-544. Lundquist, K. (1981) NMR studies of lignins. 5. Investigation of non-derivatized spruce and birch lignin by 1H NMR spectroscopy. Acta Chemica Scandinavica 35: 497-501. Lundquist, K. (1992) Isolation and purification. In 'Methods in Lignin Chemistry'. Lin, S. Y., and Dence, C. W. eds. Springer: Berlin Heidelberg. p63-80. Mansfield, S. D., H. Kim, F. Lu and J. Ralph (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols 7: 1579-1589. Marcia, M. d. O. (2009) Feruloylation in grasses: current and future perspectives. Molecular Plant 2: 861-872. Martone, P. T., J. M. Estevez, F. Lu, K. Ruel, M. W. Denny, C. Somerville and J. Ralph (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology 19: 169-175. McKendry, P. (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46. Mussatto, S. I., M. Fernandes, A. M. Milagres and I. C. Roberto (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology 43: 124-129. Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla and D. K. Johnson (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3: 10. Pettersen, R. C. (1984) The chemical composition of wood. In 'The chemistry of solid wood'; ACS Symposium Series 207; American Chemical Society: Washington, DC. p57-126. Qu, C., T. Kishimoto, S. Ogita, M. Hamada and N. Nakajima (2012) Dissolution and acetylation of ball-milled birch (Betula platyphylla) and bamboo (Phyllostachys nigra) in the ionic liquid [Bmim] Cl for HSQC NMR analysis. Holzforschung 66: 607-614. Ralph, J. (2010) Hydroxycinnamates in lignification. Phytochemistry Reviews 9: 65-83. Ralph, J., M. Bunzel, J. M. Marita, R. D. Hatfield, F. Lu, H. Kim, P. F. Schatz, J. H. Grabber and H. Steinhart (2004b) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemistry Reviews 3: 79-96. Ralph, J., J. H. Grabber and R. D. Hatfield (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydrate Research 275: 167-178. Ralph, J., R. D. Hatfield, J. H. Grabber, H. J. G. Jung, S. Quideau and R. F. Helm (1998) Cell wall cross-linking in grasses by ferulates and diferulates. Journal of the American Chemical Society 697: 209-236. Ralph, J., R. D. Hatfield, S. Quideau, R. F. Helm, J. H. Grabber and H. J. G. Jung (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. Journal of the American Chemical Society 116: 9448-9456. Ralph, J., R. F. Helm, S. Quideau and R. D. Hatfield (1992) Lignin–feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. Journal of the Chemical Society, Perkin Transactions 1: 2961-2969. Ralph, J. and L. L. Landucci (2010) NMR of lignins. In 'Lignin and lignans: advances in chemistry'; CRC Press : Boca Raton, FL. p137-234. Ralph, J. and F. Lu (1998) The DFRC method for lignin analysis. 6. A simple modification for identifying natural acetates on lignins. Journal of Agricultural and Food Chemistry 46: 4616-4619. Ralph, J., K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph and J. H. Christensen (2004a) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Reviews 3: 29-60. Sarkanen, K. V. and C. H. Ludwig (1971) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience: New York. 916pp. Scurlock, J., D. Dayton and B. Hames (2000) Bamboo: an overlooked biomass resource? Biomass and Bioenergy 19: 229-244. Sun, R., X. Sun, S. Wang, W. Zhu and X. Wang (2002) Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Industrial Crops and Products 15: 179-188. Sun, R. and J. Tomkinson (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics Sonochemistry 9: 85-93. Tai, D. S., C. L. Chen and J. S. Gratzl (1990) Chemistry of delignification during kraft pulping of bamboos. Journal of Wood Chemistry and Technology 10: 75-99. Tsuyama, T., N. Shimada, T. Motoda, Y. Matsushita, Y. Kijidani, K. Fukushima and I. Kamei (2017) Lignification in developing culms of bamboo Sinobambusa tootsik. Journal of Wood Science 63: 551-559. Vena, P. F., M. Brienzo, M. del Prado García-Aparicio, J. F. Görgens and T. Rypstra (2013) Hemicelluloses extraction from giant bamboo (Bambusa balcooa Roxburgh) prior to kraft or soda-AQ pulping and its effect on pulp physical properties. Holzforschung 67: 863-870. Vinatoru, M. (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry 8: 303-313. Wegener, G. and D. Fengel (1977) Studies on milled wood lignins from spruce part 1. Composition and molecular properties. Wood Science and Technology 11: 133-145. Wegener, G. and D. Fengel (1978) Rapid extraction of lignin from ball-milled spruce wood by the use of ultrasonics. Ultrasonics 16: 186. Wells, T., M. Kosa and A. J. Ragauskas (2013) Polymerization of Kraft lignin via ultrasonication for high-molecular-weight applications. Ultrasonics Sonochemistry 20: 1463-1469. Wenzig, E., O. Kunert, D. Ferreira, M. Schmid, W. Schühly, R. Bauer and A. Hiermann (2005) Flavonolignans from Avena sativa. Journal of Natural Products 68: 289-292. Whetten, R. and R. Sederoff (1995) Lignin biosynthesis. Plant Cell 7: 1001. Wilkerson, C., S. Mansfield, F. Lu, S. Withers, J. Y. Park, S. Karlen, E. Gonzales-Vigil, D. Padmakshan, F. Unda and J. Rencoret (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344: 90-93. Yeh, T. F., B. Goldfarb, H. M. Chang, I. Peszlen, J. L. Braun and J. F. Kadla (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung 59: 669-674. Yoshioka, A., T. Seino, M. Tabata and M. Takai (2000) Homolytic scission of interunitary bonds in lignin induced by ultrasonic irradiation of MWL dissolved in dimethylsulfoxide. Holzforschung 54: 357-364. Zeng, J., G. L. Helms, X. Gao and S. Chen (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. Journal of Agricultural and Food Chemistry 61: 10848-10857. Zhang, A., F. Lu, R. Sun and J. Ralph (2009) Ferulate–coniferyl alcohol cross-coupled products formed by radical coupling reactions. Planta 229: 1099-1108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70004 | - |
dc.description.abstract | 麻竹(Dendrocalamus latiflorus)為臺灣分布最廣之竹種,生長快速,單一生長季即可達最大高度,可達25 m,由於上述特性,在材料加工或生質能源利用上相當具有潛力。纖維素酶解木質素(cellulolytic enzyme lignins, CELs)為研究植物木質素之優良材料,但傳統萃取所耗時間長。故本研究分析超音波萃取對於麻竹稈CELs之影響,結果顯示其酸可溶木質素略多、分子量稍大,但並不影響CELs之其他性質,所以將超音波用於萃取不同生長階段麻竹稈之CELs,並進一步分析CELs其之性質。
在麻竹稈生長過程中,木質素隨著生長階段而累積,接近成熟時,木質化較高時,木質素含量變化趨於穩定。試驗結果顯示麻竹稈木質素為H-G-S type lignin,為典型草本植物木質素。其中,S unit在不同生長階段之變化最為顯著,以2.5個月生麻竹稈中段之S/G ratio最高,顯示S unit在木質化前中期的生合成速度相對G unit較快,之後稍微減緩,而在接近成熟時(6個月生基部)又相對增加。H/G ratio變化趨勢逐漸下降,顯示H unit植物生長初期較為重要。麻竹稈木質素含有p-coumaric acid與ferulic acid,其ferulic acid以生長初期的含量最多(5%),在植物成熟時逐漸減少,顯示ferulic acid在植物木質化的初期扮演著重要的角色。而p-coumaric acid的含量在2.5個月生麻竹稈中隨著生長階段而增加,可高達21.4%,變化趨勢與全細胞壁核磁共振(nuclear magnetic resonance, NMR)木質素單體分析相同,但與CELs之趨勢相反。 NMR分析結果顯示,麻竹稈CELs主要鍵結為-O-4,隨生長階段而逐漸增加。值得注意的是,.-O-4鍵結含量為4-4.6%,顯示麻竹木質素之醚鍵比起其他竹類相對含量較多,降解可能相對較為容易。 | zh_TW |
dc.description.abstract | Dendrocalamus latiflorus is the most widely distributed bamboo species in Taiwan. It grows rapidly and reaches its maximum height (about 25 m) in a growing season. Due to the characteristics, it has great potential for material processing and bioenergy. Cellulolytic enzyme lignins (CELs) is a good material for plant lignin research, but the traditional extraction of CELs takes long times. This study analyzed the effect of sonication for D. latiflorus culm CELs extraction. The results show that the CELs extracted with sonication have more acid soluble lignin, and the molecular weight of these CELs are larger. Except the properties mentioned earlier, sonication does not affect others properties of CELs in this study. So we used the sonication to extract CELs, and analyzed the properties of CELs from different portions of D. latiflorus culm.
During the growth of D. latiflorus culm, the lignin accumulated with the growing stages. And D. latiflorus culm’s lignin is a H-G-S type lignin, which is the typical herbaceous lignin. The change of S unit was the most significant in different growth stages. The highest S/G ratio was in the mid-section of 2.5-month-old D. latiflorus culm, indicating that the S unit accumulates faster than G unit in the early stage of lignification, then slows down. When the bamboo culm approachs maturity (6-month-old basal), the S unit accumulation rate rises again. The trend of H/G ratio decreased gradually, indicating that H unit is more important at the initial stage of plant growth. D. latiflorus culm’s lignin contains p-coumaric acid and ferulic acid. Ferulic acid in the early stage is the most abundant (5%) during lignification, and reduces when plants mature gradually, indicating that ferulic acid play an important role in early lignification. However, the content of p-coumaric acid increased with the growing stage in 2.5-month-old D. latiflorus culm, up to 21.4%. The trend is the same as the whole cell wall NMR analysis but opposite to that of CELs NMR analysis. NMR analysis showed that the main linkage of D. latiflorus culm CELs is -O-4, which gradually increased with growing stage. It is important to note that that the content of .-O-4 linkage is 4-4.6%, indicating that the content of ether bond of D. latiflorus culm CELs is higher than other bamboos, and this might make the lignin degradation more easily than others. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:38:23Z (GMT). No. of bitstreams: 1 ntu-107-R04625041-1.pdf: 3533859 bytes, checksum: 7435d6ce4b9bf9a779b8ecaca6df3435 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
謝誌 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 X I. 前言 1 II. 文獻回顧 2 1. 麻竹的分布與應用 2 2. 植物細胞壁之組成 4 3. 木質素 5 4. 木質素之萃取與植物細胞壁之水解 7 5. 木質素之化學結構鑑定與分析 9 6. 草本植物木質素之特性 11 III. 研究目的 17 IV. 材料與方法 18 1. 試驗材料 18 2. 麻竹稈之成分分析 19 2.1 木質素含量測定 19 2.2 醣類含量測定 20 2.3 醣醛酸含量測定 20 2.4 木質素單體分析 21 3. 麻竹稈纖維素酶解木質素(CELs)之製備 22 3.1 麻竹稈之酵素水解 22 3.2 麻竹稈CELs之萃取 22 3.2-1 傳統萃取法 22 3.2-2 超音波萃取法 22 3.3 粗木質素(crude lignin)之純化 23 4. 麻竹稈CELs之分析 23 4.1 核磁共振光譜分析 23 4.2 甲氧基含量分析 23 4.3 元素分析 24 4.4 分子量分布分析 24 5. 統計分析 24 V. 結果與討論 25 1. 不同生長階段麻竹稈之化學組成分分析 25 1.1 醣類及醣醛酸含量測定 25 1.2 木質素含量測定 26 1.3 木質素單體分析 28 2. 傳統萃取與超音波萃取之2.5月生麻竹稈基部CELs之分析 30 2.1 萃取收率 31 2.2 醣類及醣醛酸含量測定 33 2.3 元素分析與甲氧基分析 34 2.4 不同萃取方法之CELs分子量分析 35 2.5 NMR木質素結構分析 36 3. 不同生長階段麻竹稈CELs之分析 42 3.1 萃取收率 42 3.2 醣類及醣醛酸含量測定 44 3.3 元素分析與甲氧基分析 45 3.4 CELs分子量分析 47 3.5 NMR木質素結構分析 48 4. 利用NMR分析麻竹完整細胞壁(total cell wall)組成 54 5. 麻竹稈木質素模型 58 VI. 結論 59 VII. 參考文獻 61 | |
dc.language.iso | zh-TW | |
dc.title | 麻竹稈纖維素酶解木質素萃取方法及其木質素特性分析 | zh_TW |
dc.title | Extraction and characterization of cellulolytic enzyme lignin from Dendrocalamus latiflorus culm | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張上鎮(Shang-Tzen Chang),鄭森松(Sen-Sung Cheng),許富蘭(Fu-Lan Hsu) | |
dc.subject.keyword | 麻竹稈,木質素化學結構,超音波萃取,核磁共振,纖維素?解木質素, | zh_TW |
dc.subject.keyword | Dendrocalamus latiflorus culm,lignin characterization,sonication,NMR,CELs, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201800438 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。