請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69997
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
dc.contributor.author | Chong-Rong Lee | en |
dc.contributor.author | 李忠容 | zh_TW |
dc.date.accessioned | 2021-06-17T03:38:00Z | - |
dc.date.available | 2028-12-31 | |
dc.date.copyright | 2018-03-02 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-09 | |
dc.identifier.citation | [1] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger and F. Solzbacher, “A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123-133, Jan. 2007.
[2] Y. H. Liu, C. L. Li, and T. H. Lin, “A 200-pJ/b MUX-based RF Transmitter for Implantable Multi-Channel Neural Recording,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10, pp. 2533-2541, Oct. 2009. [3] FCC Rules and Regulations, “MedRadio band plan,” Nov. 2011. [4] Y. L. Tsai, J. Y. Chen, B. C. Wang, T. Y. Yeh, and T. H. Lin, “A 400-MHz 10-Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique,” IEEE symposium on VLSI Circuits, pp. 70-71, Jun. 2014. [5] Y. L. Tsai, C. Y. Lin, B. C. Wang and T. H. Lin, “A 330-W 400-MHz BPSK Transmitter in 0.18-W CMOS for Biomedical Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 5, pp. 448-452, May 2016. [6] D. C. Daly and A. P. Chandrakasan, “An Energy-Efficient OOK Transceiver for Wireless Sensor Networks,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1003-1011, May 2007. [7] L. Liu, T. Sakurai, and M. Takamiya, “315MHz Energy-Efficient Injection-Locked OOK Transmitter and 8.4μW Power-Gated Receiver Front-End for Wireless Ad Hoc Network in 40nm CMOS,” IEEE Symposium on VLSI Circuits, pp. 164-165, Jun. 2011. [8] B. Zhao, Y. Sun, W. Zou, Y. Lian, Y. Liu and H. Yang, “An energy efficient fully integrated OOK transceiver SoC for wireless body area networks,” IEEE Asian Solid-State Circuits Conference, pp. 441-444, Nov. 2013. [9] S. J. Kim, D. Lee, K. Y. Lee and S. G. Lee, “A 2.4-GHz Super-Regenerative Transceiver with Selectivity-Improving Dual Q-Enhancement Architecture and 102-W All-Digital FLL,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3287-3298, Sept. 2017. [10] S. Haykin, Communication Systems, 4th ed. (Asian ed.), New York: John Wiley, 2001. [11] A. A. Abidi, “Direct-conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1399-1410, Dec. 1995. [12] S. A. Yu and P. Kinget, “A 0.65-V 2.5-GHz Fractional-N Synthesizer With Two-Point 2-Mb/s GFSK Data Modulation,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2411-2425, Sept. 2009. [13] A. C. W. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King, F. Lauria, J. Schiff, and A. J. Burdett, “A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 186-198, Jan. 2013. [14] C. Li and A. Liscidini, “Class-C PA-VCO Cell for FSK and GFSK Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1537-1546, July 2016. [15] R. Guerra, A. Finocchiaro, G. Papotto, B. Messina, L. Grasso, R. L. Rosa, G. Zoppi, G. Notarangelo and G. Palmisano, “An RF-powered FSK/ASK receiver for remotely controlled systems,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 226-229, May 2016. [16] J. Pandey and B. P. Otis, “A Sub-100μW MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1049-1058, May 2011. [17] J. Bae, L. Yan, and H.-J. Yoo, “A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Applications,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 928-937, Apr. 2011. [18] H. Yan, J. G. Macias-Montero, A. Akhnoukh, L. C. N. de Vreede, J. R. Long, and J. N. Burghartz, “An Ultra-Low-Power BPSK Receiver and Demodulator Based on Injection-Locked Oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1339-1349, May 2011. [19] Q. Zhu and Y. Xu, “A 228-μW 750 MHz BPSK Demodulator Based on Injection Locking,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 416-423, Feb. 2011. [20] J.-Y. Chen, M. P. Flynn, and J. P. Hayes, “A Fully Integrated Auto-Calibrated Super- Regenerative Receiver in 0.13-m CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1976-1985, Sept. 2007. [21] V. D. Rezaei, S. J. Shellhammer, M. Elkholy and K. Entesari, “A fully integrated 320 pJ/b OOK super-regenerative receiver with −87 dBm sensitivity and self-calibration,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 222-225, May 2016. [22] J. Ayers, K. Mayaram and T. S. Fiez, “A 0.4nJ/b 900MHz CMOS BFSK Super-Regenerative Receiver,” IEEE Custom Integrated Circuits Conference, pp. 591-594, Sept. 2008. [23] B. Razavi, “A Study of Injection Locking and Pulling in Oscillators,” Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sept. 2004. [24] S. Shekhar, M. Mansuri, F.-O. Mahony, G. Balamurugan, J.-E. Jaussi, J. Kennedy, D. J. Allstot, R. Mooney, and B. Casper, “Strong Injection Locking in Low-Q LC Oscillators: Modeling and Application in a Forwarded-Clock I/O Receiver,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 8, pp. 1818-1829, Aug. 2009. [25] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun 1999. [26] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009. [27] Y. C. Huang and S. I. Liu, “A 2.4-GHz Subharmonically Injection-Locked PLL With Self-Calibrated Injection Timing,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 417-428, Feb. 2013. [28] N. Lanka, S. Patnaik, and R. Harjani, “Understanding the Transient Behavior of Injection Locked LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 667-670, Sept. 2007. [29] B. Razavi, RF Microelectronics, 2nd ed., New Jersey: Prentice Hall, 2012. [30] S. Diao, Y. Zheng, Y. Gao, S.-J. Cheng, X. Yuan, M. Je, and C.-H. Heng, “A 50-Mb/s CMOS QPSK/O-QPSK Transmitter Employing Injection Locking for Direct Modulation,” IEEE Transactions on Microwave Theory and Techniques, vol.60, no.1, pp. 120-130, Jan. 2012. [31] W. Rhee, Wireless Transceiver Circuits: System Perspectives and Design Aspects. CRC Press, 2015. [32] M. Rahman, M. Elbadry and R. Harjani, “An IEEE 802.15.6 Standard Compliant 2.5 nJ/Bit Multiband WBAN Transmitter Using Phase Multiplexing and Injection Locking,” IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1126-1136, May 2015. [33] K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa, “A 0.114-mW dual-conduction class-C CMOS VCO with 0.2-V power supply,” IEEE Symposium on VLSI Circuits, pp. 228-229, Jun. 2009. [34] J. Lee, “A 20-Gb/s Adaptive Equalizer in 0.13-m CMOS Technology,” IEEE Journal of Solid-State Circuits, vol.41, no.9, pp. 2058-2066, Sept. 2006. [35] F. W. Kuo, S. B. Ferreira, H. N. Ron Chen, L. C. Cho, C. P. Jou, F. L. Hsueh, I. Madadi, M. Tohidian, M. Shahmohammadi, M. Babaie and R. B. Staszewski, “A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 1144-1162, April 2017. [36] J. Pandey, J. Shi and B. Otis, “A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication,” IEEE International Solid-State Circuits Conference, pp. 460-462, Feb. 2011. [37] Y. L. Tsai, J. Y. Chen, C. Y. Lin, B. C. Wang, T. Y. Yeh and T. H. Lin, “An energy-efficient differential-BPSK transceiver for IoT applications,” IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1-3, Aug 2016. [38] X. Huang, P. Harpe, G. Dolmans, H. de Groot, and J.R. Long, “A 780–950 MHz, 64–146 μW Power-Scalable Synchronized-Switching OOK Receiver for Wireless Event-Driven Applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 5, pp. 1135-1147, May 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69997 | - |
dc.description.abstract | 近年來,物聯網的應用日漸普及,是當前炙手可熱的技術重點之一。物聯網藉由設立在各處的感測節點讀取周遭環境的資訊後,將其取得的資訊或訊號傳到後端進行處理。因此,無線收發機是物聯網不可以或缺的一塊。
為了達到長時間使用及省電的目的,本論文提出了一個具有高能量效率的短距離通訊之無線收發機。本無線收發機以差分相位鍵移調變(DPSK)為系統之調變方式,採用注入式鎖定技巧完成調變與解調。 發送機採用次諧波注入鎖定,低頻訊號會經由相位選擇器選取相位後注入到高頻振盪器,改變高頻振盪器的相位資訊,以完成相位的調變。接收機則採用相位至振幅轉換的技巧來完成解調。接收之輸入訊號注入到震盪器中,當其相位產生變化時,震盪器的輸出振幅也會因此產生暫時性的變化,進而完成解調。此無線收發機為一開迴路架構,可大幅簡化電路設計的複雜度,進而減少功率的消耗。 本作品使用台積電180納米製程,頻段為400-457 MHz Med-Radio通訊傳輸頻帶,以0.5伏供應電壓來完成電路實現。資料傳輸量為10 Mbps,系統功耗為1.3 mW,能量效率為130 pJ/b。發送機的最大輸出功率為-10 dBm,誤差向量幅度為8.74 %,而接收機的靈敏度為-60 dBm。 | zh_TW |
dc.description.abstract | The applications of Internet of things (IoT) have drawn more attentions recently. The sensor nodes set up in various places collect the information of the surrounding environment and transmit the information to the back-end system for further processing. Therefore, the wireless transceiver is a critical element of the IoT.
In order to achieve long-term usage and power-saving purposes, this thesis proposes a wireless transceiver with high energy efficiency for short-range communications. The injection-locked technique and D-BPSK modulation/demodulation are adopted for this system. The subharmonic injection-locked technique is adopted in the transmitter. The multiplexer (MUX) selects the phase of low frequency and injects to high frequency oscillator. Therefore, the desired modulation can be achieved by changing the phase of a injection-locked oscillator. In the receiver, a phase-to-amplitude conversion based on the injection-locking technique is employed. It detects the phase transition of a D-BPSK signal and then convert to an amplitude variation. The open-loop architecture is adopted in this system, which reduces the complexity of the circuit design and power consumption. This work is fabricated in TSMC 180-nm CMOS technology. This wireless transceiver is operated at 400-457 MHz Med-Radio band. Supply voltage is 0.5 V and data rate is 10-Mbps. The total power consumption is 1.3 mW and equivalent energy efficiency is 130 pJ/b. The maximum output power of the transmitter is -10 dBm and 8.4 % error vector magnitude (EVM) is achieved. The sensitivity of receiver is -60 dBm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:38:00Z (GMT). No. of bitstreams: 1 ntu-107-R04943051-1.pdf: 6284888 bytes, checksum: fbc31c71375d063701bd19912abfd4a0 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation 1 1.2 Data-rate Requirement 2 1.3 Operation Frequency Band 3 1.4 Modulation Scheme 4 1.5 Link Budget 6 1.6 Thesis Overview 7 Chapter 2 Introduction to Low-Power Wireless Transceiver 9 2.1 General Architecture of Wireless Transceiver 9 2.2 Low-Power Direct-Modulation Transceiver 11 2.2.1 PLL-Based Transceiver 11 2.2.2 OOK Transceiver 12 2.2.3 Injection-Locked Based Transceiver 12 2.2.4 Super-regenerative Receiver 16 Chapter 3 Proposed Low-Power Injection-Locked D-BPSK Transmitter 17 3.1 Injection-Locked LC Oscillator Theory 17 3.2 Proposed Transceiver Architecture 20 3.3 Proposed Transmitter 21 3.3.1 Sub-harmonic injection-locked oscillator as phase modulator 21 3.3.2 The Proposed D-BPSK Transmitter 23 3.3.3 Design Specifications of the Proposed Transmitter 24 3.4 Circuit Implementation 29 3.4.1 Pulse Generator 29 3.4.2 Sub-harmonically Injection-Locked Ring DCO 30 3.4.3 Power Amplifier 31 3.5 Simulation Results 34 Chapter 4 Proposed Low-Power Injection-Locked D-BPSK Receiver 35 4.1 Proposed Receiver 35 4.1.1 Injection-Locked Oscillator as Phase-to-Amplitude Converter 35 4.1.2 The Proposed D-BPSK Receiver 37 4.1.3 Design Specifications of the Proposed Receiver 38 4.2 Circuit Implementation 40 4.2.1 Low Noise Amplifier 40 4.2.2 Injection-Locked Dual-Conduction Oscillator 44 4.2.3 Baseband Circuits 46 4.3 Simulation Results 47 Chapter 5 Measurement Setup and Experiment Results 49 5.1 Die Photo 49 5.2 Measurement Environment Setup 49 5.3 PCB Design 50 5.4 Measurement Results 51 5.4.1 Transmitter measurement results 51 5.4.2 Receiver measurement results 55 5.5 Comparison Table 57 Chapter 6 Conclusions and Future Works 59 6.1 Conclusions 59 6.2 Future Works 59 References 61 | |
dc.language.iso | en | |
dc.title | 應用於物聯網使用注入式鎖定技巧之超低電壓無線收發機 | zh_TW |
dc.title | Ultra-low-voltage Wireless Transceiver Using Injection-locked Technique for IoT Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉深淵(Shen-Iuan Liu),曾英哲(Ying-Che Tseng),黃柏鈞(Po-Chiun Huang) | |
dc.subject.keyword | 無線收發機,注入式鎖定,接收機,發送機, | zh_TW |
dc.subject.keyword | wireless transceiver,injection-locked,receiver,transmitter, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU201800435 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 6.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。