請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅南徳(Roland Kirschner),山岡裕一(Yuichi Yamaoka) | |
| dc.contributor.author | Kenta Fujii | en |
| dc.contributor.author | 藤井健太 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:37:48Z | - |
| dc.date.available | 2021-02-20 | |
| dc.date.copyright | 2021-02-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-18 | |
| dc.identifier.citation | Adamo, M., Chialva, M., Calevo, J., Rose, S. D., Girlanda, M., Perotto, S., Balestrini, R. (2020). The dark side of orchid symbiosis: Can Tulasnella calospora decompose host tissues? International Journal of Molecular Sciences, 21. 3139 Adams, G. C., Butler, E. E. (1978). Serological relationships among anastomosis groups of Rhizoctonia solani. Phytopathology. 69. 629-633. Arakawa, M., Inagaki, K. (2014). Molecular markers for genotyping anastomosis groups and understanding the population biology of Rhizoctonia species. Journal of General Plant Pathology, 80, 401–407. Bidartondo, M. I., Bruns, T. D., Weiss, M., Sérgio, C., Read, D. J. (2003). Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings. Biological Sciences / The Royal Society, 270, 835–842. Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D., Read, D. J. (2004). Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings. Biological Sciences / The Royal Society, 271, 1799–1806. Bidartondo, M. I., Read, D. J. (2008). Fungal specificity bottlenecks during orchid germination and development. Molecular Ecology, 17, 3707–3716. Cameron, D. D., Johnson, I., Leake, J. R., Read, D. J. (2007). Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Annals of Botany, 99, 831–834. Cameron, D. D., Johnson, I., Read, D. J., Leake, J. R. (2008). Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. The New Phytologist, 180, 176–184. Cameron, D. D., Leake, J. R., Read, D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. The New Phytologist, 171, 405–416. Chen, C. X. (2019). Identification and biodiversity of Rhizoctonia anastomosis groups and Rhizoctonia-like fungi in Taiwan (In Chinese). National Chung Hsing University, master thesis. Christenhusz, M. J. M., Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261, 201–217. Cruz, D., Suárez, J. P., Kottke, I., Piepenbring, M. (2014). Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella. Mycologia, 106, 708–722. Cruz, D., Suarez, J. P., Piepenbring, M. (2016). Morphological revision of Tulasnellaceae, with two new species of Tulasnella and new records of Tulasnella spp. for Ecuador. Nova Hedwigia, 102, 279–338. Currah, R. S., Sigler, L., Hambleton, S. (1987). New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Canadian Journal of Botany, 65, 2473–2482. Currah, R. S. Zelmer, C. (1992). A key and notes for the genera of fungi mycorrhizal with orchids and a new species in the genus Epulorhiza. Reports of the Tottori Mycological Institute, 30. 43-59. Currah, R. S., Zelmer, C. D., Hambleton, S., Richardson, K. A. (1997b). Fungi from orchid mycorrhizas. In J. Arditti, A. M. Pridgeon (Eds.), Orchid biology: Reviews and perspectives, VII (pp. 117-170). 11 Dordrecht, the Netherlands: Kluwere Academic Publishers. Currah, R. S., Zettler, L. M., McInnis, T. M. (1997a). Epulorhiza inquilina sp. nov. from Platanthera (Orchidaceae) and a key to Epulorhiza species. Mycotaxon, 61, 335-342. Dearnaley, J. D. W., Martos, F., Selosse, M. A. (2012). 12 Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In B. Hock (Ed.), Fungal Associations (pp. 207–230). Springer Berlin Heidelberg. De Long, J. R., Swarts, N. D., Dixon, K. W., Egerton-Warburton, L. M. (2013). Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media. Annals of Botany, 111, 409–418. Dong, W., Li, Y., Duan, C., Li, X., Naito, S., Conner, R. L., Yang, G., Li, C. (2017). Identification of AG-V, a new anastomosis group of binucleate Rhizoctonia spp. from taro and ginger in Yunnan province. European Journal of Plant Pathology / European Foundation for Plant Pathology, 148, 895–906. Downing, J. L., Liu, H., McCormick, M. K., Arce, J., Alonso, D., Lopez‐Perez, J. (2020). Generalized mycorrhizal interactions and fungal enemy release drive range expansion of orchids in southern Florida. Ecosphere, 11. Duffy, K. J., Waud, M., Schatz, B., Petanidou, T., Jacquemyn, H. (2019). Latitudinal variation in mycorrhizal diversity associated with a European orchid. Journal of Biogeography, 46, 968–980. Freitas, E. F. S., da Silva, M., Cruz, E. da S., Mangaravite, E., Bocayuva, M. F., Veloso, T. G. R., Selosse, M.-A., Kasuya, M. C. M. (2020). Diversity of mycorrhizal Tulasnella associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest, including four new species. Scientific Reports, 10, 7069. Frericks, J., Munkacsi, A., Ritchie, P., Luo, Y. B., Lehnebach, C. A. (2018). Phylogenetic affinities and in vitro seed germination of the threatened New Zealand orchid Spiranthes novae-zelandiae. New Zealand Journal of Botany, 56, 91–108. Fuji, M., Miura, C., Yamamoto, T., Komiyama, S., Suetsugu, K., Yagame, T., Yamato, M., Kaminaka, H. (2020). Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth. Symbiosis, 81, 53-63 Fujii, K. (2019). Comparison of mycorrhizal fungi associating with roots and protocorms of Spiranthes sinensis var. amoena (In Japanese). University of Tsukuba, bachelor thesis. Fujimori, S., Abe, J. P., Okane, I., Yamaoka, Y. (2019). Three new species in the genus Tulasnella isolated from orchid mycorrhiza of Spiranthes sinensis var. amoena (Orchidaceae). Mycoscience, 60, 71–81. Harvais, G., Hadley, G. (1967). The development of Orchis purpurella in asymbiotic and inoculated cultures. The New Phytologist, 66, 217–230. Hsieh, C-F., Shen, C-F. (1994). Introduction of flora of Taiwan, 1: Geography, Geology, Climate, and Soils. In Editorial Committee of the Flora of Taiwan (ed), Flora of Taiwan Second Edition (pp. 1-18). Editorial Committee of the Flora of Taiwan, Taipei. Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Tanaka, C., Gafur, A., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y. (2012). Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience, 53, 396–401. IUCN. (2020) The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org. Downloaded on 1 January 2021. Jacquemyn, H., Waud, M., Merckx, V. S. F. T., Brys, R., Tyteca, D., Hedrén, M., Lievens, B. (2016). Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Scientific Reports, 6, 37182. Jiang, J. H., Lee, Y. I., Cubeta, M. A., Chen, L. C. (2015). Characterization and colonization of endomycorrhizal Rhizoctonia fungi in the medicinal herb Anoectochilus formosanus (Orchidaceae). Mycorrhiza, 25, 431–445. Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., Canbäck, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M. D., Doré, J., Floudas, D., Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., Hess J., Högberg, N., Johansson, T., Khouja, H. R., LaButti, K., Lahrmann, U., Levasseur, A., Lindquist, E. A., Lipzen, A., Marmeisse, R., Martino, E., Murat, C., Ngan, C. Y., Nehls, U., Plett, J. M., Pringle, A., Ohm, R. A., Perotto, S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M., Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Mycorrhizal Genomics Initiative Consortium, Tunlid, A., Grigoriev, I. V., Hibbett, D. S., Martin, F. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410–415. Kovács, A., Vasas, A., Hohmann, J. (2008). Natural phenanthrenes and their biological activity. Phytochemistry, 69, 1084–1110. Kuiter, R. H. (2018). Pollination of Spiranthes australis (Orchidaceae) in Victoria, Australia. Aquatic Photographics. Kuninaga, S. (2002). Current situation of the taxonomy of the genus Rhizoctonia and the R. solani species complex (In Japanese). Japanese Journal of Phytopathology, 68, 3-20. Kuramae, E. E., Buzeto, A. L., Nakatani, A. K., Souza, N. L. (2007). rDNA-based characterization of a new binucleate Rhizoctonia spp. causing root rot on kale in Brazil. European Journal of Plant Pathology, 119, 469–475. Lin, T. P., Lin, W. M. (2011). Newly Discovered Native Orchids of Taiwan (IV). Taiwania, 56, 315–322. Lin, T. P., Liu, H. Y., Hsieh, C. F., Wang, K. H. (2016). Complete list of the native orchids of Taiwan and their type information. Taiwania, 61, 78–126. Linde, C. C., May, T. W., Phillips, R. D., Ruibal, M., Smith, L. M., Peakall, R. (2017). New species of Tulasnella associated with terrestrial orchids in Australia. IMA Fungus, 8, 28–47. Masuhara, G., Katsuya, K. (1992). Mycorrhizal differences between genuine roots and tuberous roots of adult plants of Spiranthes sinensis var. amoena (Orchidaceae). The Botanical Magazine,105, 453–460. Masuhara, G., Katsuya, K. (1994). In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae). The New Phytologist, 127, 711–718. Masuhara, G., Katsuya, K., Yamaguchi, K. (1993). Potential for symbiosis of Rhizoctonia solani and binucleate Rhizoctonia with seeds of Spiranthes sinensis var. amoena in vitro. Mycological Research, 97, 746–752. McCormick, M. K., Taylor, D. L., Juhaszova, K., Burnett, R. K., Jr, Whigham, D. F., O’Neill, J. P. (2012). Limitations on orchid recruitment: not a simple picture. Molecular Ecology, 21, 1511–1523. McCormick, M. K., Taylor, D. L., Whigham, D. F., Burnett, R. K., Jr. (2016). Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. The Journal of Ecology, 104, 744–754. McCormick, M. K., Whigham, D. F., Canchani-Viruet, A. (2018). Mycorrhizal fungi affect orchid distribution and population dynamics. The New Phytologist, 219, 1207–1215. McCormick, M. K., Whigham, D. F., O’Neill, J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids. The New Phytologist, 163, 425–438. Meng, Y.-Y., Fan, X.-L., Zhou, L.-R., Shao, S.-C., Liu, Q., Selosse, M.-A., Gao, J.-Y. (2019)b. Symbiotic fungi undergo a taxonomic and functional bottleneck during orchid seeds germination: a case study on Dendrobium moniliforme. Symbiosis , 79, 205–212. Meng, Y. Y., Zhang, W. L., Selosse, M. A., Gao, J. Y. (2019)a. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza, 29, 541-547. Miyauchi, S., Kiss, E., Kuo, A., Drula, E., Kohler, A., Sánchez-García, M., Morin, E., Andreopoulos, B., Barry, K. W., Bonito, G., Buée, M., Carver, A., Chen, C., Cichocki, N., Clum, A., Culley, D., Crous, P. W., Fauchery, L., Girlanda, M., Hayes, R. D., Kéri, Z., LaButti, K., Lipzen, A., Lombard, V., Magnuson, J., Maillard, F., Murat, C., Nolan, M., Ohm, R. A., Pangilinan, J., Pereira, M. F., Perotto, S., Peter, M., Pfister, S., Riley, R., Sitrit, Y., Stielow, J. B., Szöllősi, G., Žifčáková, L., Štursová. M., Spatafora, J. W., Tedersoo, L., Vaario, L. M., Yamada, A., Yan, M., Wang, P., Xu, J., Bruns, T., Baldrian, P., Vilgalys, R., Dunand, C., Henrissat, B., Grigoriev, I. V., Hibbett, D., Nagy, L. G. , Martin, F. M. (2020). Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 11, 1–17. Moore, R. T. (1996). The dolipore/parenthesome septum in modern taxonomy. In B. Sneh, S. Jabaji-Hare, S. M. Neate, G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 13-35). Dordrecht: Kluwere Academic Publishers. Nishikawa, T. Ui, T. (1976). Rhizoctonias isolated from wild orchids in Hokkaido (In Japanese). Transactions of the Mycological Society of Japan. 17, 77-84. Oberwinkler, F., Cruz, D., Suárez, J. P. (2017). Biogeography and Ecology of Tulasnellaceae. In L. Tedersoo (Ed.), Biogeography of Mycorrhizal Symbiosis (pp. 237–271). Springer International Publishing. Oberwinkler, F., Riess, K., Bauer, R., Kirschner, R., Garnica, S. (2013). Taxonomic re-evaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycological Progress, 12, 763–776. O’Donnell, K. (1993). Fusarium and its near relatives. In D. R. Reynold and J. W. Taylor (Eds.), The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics (pp. 225–233). Wallingford: CABI. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623. Ogoshi, A. (1979). Anastomosis grouping among isolates of binucleate Rhizoctonia. Transactions of the Mycological Society of Japan, 20, 33–39. Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25, 125–143. Ogoshi, A., Oniki, M., Araki, T., Ui, T. (1983). Studies on the anastomosis groups of binucleate Rhizoctonia and their perfect states. Journal of the Faculty of Agriculture, Hokkaido University, 61, 244-260. Oktalira, F. T., Whitehead, M. R., Linde, C. C. (2019). Mycorrhizal specificity in widespread and narrow-range distributed Caladenia orchid species. Fungal Ecology, 42, 100869. Peng, J., Xu, Q., Xu, Y., Qi, Y., Han, X., Xu, L. (2007). A new anticancer dihydroflavanoid from the root of Spiranthes australis (R. Brown) Lindl. Natural Product Research, 21, 641–645. Pereira, L. O., Rollemberg, C. L., Borges, A. C., Matsuoka, K., Kasuya, M. C. M. (2003). Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience, 44, 153-155. Pace, M. C., Giraldo, G., Frericks, J., Lehnebach, C. A., Cameron, K. M. (2019). Illuminating the systematics of the Spiranthes sinensis species complex (Orchidaceae): ecological speciation with little morphological differentiation. Botanical Journal of the Linnean Society. Linnean Society of London, 189, 36–62. Qin, J., Zhang, W., Ge, Z.-W., Zhang, S.-B. (2019). Molecular identifications uncover diverse fungal symbionts of Pleione (Orchidaceae). Fungal Ecology, 37, 19–29. Randall, R. P. (2017). A global compendium of weeds. 3rd edition. Perth, Western Australia. R. P. Randall. Rasmussen, H. N., Dixon, K. W., Jersáková, J., Těšitelová, T. (2015). Germination and seedling establishment in orchids: a complex of requirements. Annals of Botany, 116, 391–402. Rasmussen, H. N., Whigham, D. F. (1993). Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany, 80, 1374–1378. Roberts, P. (1994). Long-spored Tulasnella species from Devon, with additional notes on allantoid-spored species. Mycological Research, 98, 1235–1244. Roberts, P. (1998). Ceratobasidium obscurum: an atypical Thanatephorus species, misinterpreted as an orchid associate. Mycological Research, 102, 1074–1076. Roberts, P. (1999) Rhizoctonia-forming fungi: a taxonomic guide. Royal Botanical Gardens, Kew. Saksena, H. K., Vaartaja, O. (1961). Taxonomy, morphology, and pathogenicity of rhizoctonia species from forest nurseries. Canadian Journal of Botany. 39, 627–647. Samerpitak, K., Duarte, A. P. M., Attili-Angelis, D., Pagnocca, F. C., Heinrichs, G., Rijs, A. J. M. M., Alfjorden, A., van den Ende, A. H. G. G., Menken, S. B. J., de Hoog, G. S. (2015). A new species of the oligotrophic genus Ochroconis (Sympoventuriaceae). Mycological Progress, 14(2), 1-10 Sharon, M., Freeman, S., Kuninaga, S., Sneh, B. (2007). Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology / European Foundation for Plant Pathology, 117, 247–265. Sharon, M., Sneh, B., Kuninaga, S., Hyakumachi, M., Naito, S. (2008). Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience, 49, 93–114. Shefferson, R. P., Bunch, W., Cowden, C. C., Lee, Y., Kartzinel, T. R., Yukawa, T., Downing, J., Jiang, H. (2019a). Does evolutionary history determine specificity in broad ecological interactions? The Journal of Ecology, 107, 1582–1593. Shefferson, R. P., Cowden, C. C., McCormick, M. K., Yukawa, T., Ogura-Tsujita, Y., Hashimoto, T. (2010). Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Molecular Ecology, 19, 3008–3017. Shefferson, R. P., Jacquemyn, H., Kull, T. (2019b). The demography of terrestrial orchids: life history, population dynamics and conservation. Botanical Journal of the Linnean Society, 192, 315-332. Shie, P. H., Huang, S. S., Deng, J. S., Huang, G. J. (2015). Spiranthes sinensis suppresses production of pro-inflammatory mediators by down-regulating the NF-κB signaling pathway and up-regulating HO-1/Nrf2 anti-oxidant protein. The American Journal of Chinese Medicine, 43, 969–989. Shimura, H., Sadamoto, M., Matsuura, M., Kawahara, T., Naito, S., Koda, Y. (2009). Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza, 19, 525–534. Smith, S. E. Read, D. J. (2008). Mycorrhizal symbiosis. Academic Press, Cambridge, UK. Sneh, B., Butpee, L. Ogoshi, A. (1991). Identification of Rhizoctonia species. APS press Solis, K., Barriuso, J. J., Garces-Claver, A., Gonzalez, V. (2017). Tulasnella tubericola (Tulasnellaceae, Cantharellales, Basidiomycota): a new Rhizoctonia-like fungus associated with mycorrhizal evergreen oak plants artificially inoculated with black truffle (Tuber melanosporum) in Spain. Phytotaxa. 317. 175-187. Suárez, J. P., Weiss, M., Abele, A., Garnica, S., Oberwinkler, F., Kottke, I. (2006). Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycological Research, 110, 1257–1270. Suetsugu, K., Lin, J.-Z., Hsu, T.-C., Hayakawa, H. (2020b). Interspecific hybridization between Spiranthes australis and S. sinensis (Orchidaceae) in Southern Taiwan. Acta Phytotaxonomica et Geobotanica, 71, 177–184. Suetsugu, K., Matsubayashi, J., Tayasu, I. (2020a). Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. The New Phytologist. 227, 1519-1529. Swarts, N. D., Dixon, K. W. (2009). Terrestrial orchid conservation in the age of extinction. Annals of Botany, 104, 543–556. Stewart, S. L., Kane, M. E. (2007). Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cellular Developmental Biology - Plant, 43, 178–186. Taylor, D. L., Bruns, T. D. (1997). Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the United States of America, 94, 4510–4515. Taylor, D. L., McCormick, M. K. (2008). Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. The New Phytologist, 177, 1020–1033. Terashita, T. (1982). Fungi inhabiting wild orchids in Japan (II). Isolation of symbionts from Spiranthes sinensis var. amoena. Transactions of the Mycological Society of Japan, 23, 319–328. Tsutsumi, K., Tomita, M. (1986). Symbiotic germination of Spiranthes sinensis Ames associated with some orchid endophytes. Journal of the Faculty of agriculture, Hokkaido University, 62, 440-452 Uetake, Y., Ogoshi A., Hayakawa S. (1999). Observation of teleomorphs of rhizoctonias (Thanatephorus orchidicola and Tulasnella deliquescens) isolated from orchids (In Japanese). Memoirs of the Graduate School of Agriculture, Hokkaido University, 22. 121-125. van Driel, K. G. A., Humbel, B. M., Verkleij, A. J., Stalpers, J., Müller, W. H., Boekhout, T. (2009). Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycological Research, 113, 559–576. Veldre, V., Abarenkov, K., Bahram, M., Martos, F., Selosse, M.-A., Tamm, H., Kõljalg, U., Tedersoo, L. (2013). Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology, 6, 256–268. Warcup, J. H. (1973). Symbiotic germination of some Australian terrestrial orchids. The New Phytologist, 72, 387–392. Warcup, J. H. (1981). The mycorrhizal relationships of Australian orchids. The New Phytologist, 87, 371–381. Warcup, J. H., Talbot, P. H. B. (1967). Perfect states of rhizoctonias associated with oechids. New Phytologist, 66, 631–641. Waterman, R. J., Bidartondo, M. I., Stofberg, J., Combs, J. K., Gebauer, G., Savolainen, V., Barraclough, T. G., Pauw, A. (2011). The effects of above- and belowground mutualisms on orchid speciation and coexistence. The American Naturalist, 177, 54–68. Waud, M., Wiegand, T., Brys, R., Lievens, B., Jacquemyn, H. (2016). Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids. The New Phytologist, 211, 255–264. White, T. J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogonetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 315–322). Sun Diego: Academic Press. Xing, X., Ma, X., Men, J., Chen, Y., Guo, S. (2017). Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species. Science China. Life Sciences, 60, 536–544. Xing, X., Gao, Y., Zhao, Z., Waud, M., Duffy, K. J., Selosse, M.-A., Jakalski, M., Liu, N., Jacquemyn, H., Guo, S. (2020). Similarity in mycorrhizal communities associating with two widespread terrestrial orchids decays with distance. Journal of Biogeography, 47, 421–433. Yang, Y. G., Zhao, C., Guo, Z. J., Wu, X. H. (2015). Characterization of a new anastomosis group (AG-W) of binucleate Rhizoctonia, causal agent for potato stem canker. Plant Disease, 99, 1757–1763. Youm, J. Y., Han, H. K., Chung, J. M., Cho, Y. C., Lee, B. C., Eom, A. H. (2012). Identification of orchid mycorrhizal fungi isolated from five species of terrestrial orchids in Korea (In Korean). The Korean Journal of Mycology, 40, 132-135. Zelmer, C. D., Currah, R. S. (1995). Ceratorhiza pernacatena and Epulorhiza calendulina spp. nov.: Mycorrhizal fungi of terrestrial orchids. Canadian Journal of Botany, 73, 1981-1985. Zelmer, C. D., Cuthbertson, L., Currah, R. S. (1996). Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience, 37, 439. Zettler, L. W., Barrington, F. V., McInnis, T. M. (1995). Developmental morphology of Spiranthes odorata seedlings in symbiotic culture. Lindleyana: The Scientific Journal of the American Orchid Society, 10, 1–216. Zhang, F. S., Lv, Y. L., Zhao, Y., Guo, S. X. (2013). Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. Journal of Zhejiang University. Science. B, 14, 785–792. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69993 | - |
| dc.description.abstract | 綬草(Spiranthes sinensis)是台灣最常見的蘭花物種之一。但是,對其菌根真菌的多樣性(mycorrhizal fungi)知之甚少,而菌根真菌專一性或許造就了其普遍性。於本研究中,台灣本土的綬草菌根真菌被完整地調查以此了解真菌共生物之功能及其多樣性。 成年植物於七個地點中採集,其中台北市有五個,花蓮縣有兩個。此外,種子包被埋在台北市的四個地點,並在四個月後收集以獲取原球莖。菌根真菌以細孔分離法進行分離,並結合形態學和分子系統發育學分析進行鑑定,每種物種的代表性分離物也進行了共生種子發芽試驗。 從39株成年植物中分離出473株菌株,於其中有53.3%屬於Tulasnella (Basidiomycota),46.7%屬於Rhizoctonia (Basidiomycota),此外僅有2個分離菌株屬於Ochroconis (Ascomycota)。四個Tulasnella屬的物種被鑑定出來,包括了Tulasnella deliquescens clade A、T. cumulopuntioides、T. tubericola與Tulasnella sp. TTW1,以及七個Rhizoctonia屬的物種,包括了Rhizoctonia sp. AG-A、AG-Fb、AG-G、AG-L、RTW1、RTW2與RTW3。Tulasnella與Rhizoctonia分別於64.1%與59.0%的成熟植物中被分離出來,其中T. deliquescens clade A於所有實驗地點皆為分離頻率最高的物種(於56.4%成熟植物中分離到),分子演化學分析結果顯示T. deliquescens clade A被分成2個演化支且較為難以分辨其物種。出乎意外地,Rhizoctonia 於所有實驗地點皆有被分離到,且於單一地點,所有的分離菌株皆屬於同一個屬,除了單一採樣地點之外,台北和花蓮的研究點之間未發現菌根真菌的物種組成存在顯著差異。13個原球莖中分離出35個分離株,於其中,88.6%的分離菌株屬於Tulasnella,11.4%屬於Rhizoctonia。這些真菌被鑑定為T. deliquescens clade A、Rhizoctonia sp. AG-G與RTW1。於三個實驗地點T. deliquescens clade A為主要物種。於共生種子發芽試驗中所有分離真菌均被證實為菌根真菌除了Ochroconis spp.以外。此外,T. deliquescens clade A、T. cumulopuntioides、T. tubericola與Rhizoctonia sp. AG-A、AG-Fb、AG-G、AG-L、RTW2能夠協助原球莖發育與葉片出苗。根據本研究成果顯示,T. deliquescens clade A無論是在綬草的根或原球莖且為最優勢之菌根真菌,此結果與日本的S. australis之菌根真菌相似。然而,Rhizoctonia spp.亦為綬草最主要的菌根真菌,超過半數的成熟植物中皆能分離到。因此,經過比較後可之日本的S. australis與台灣的S. sinensis之菌根真菌組成是不同的,需要進一步的研究來闡明影響這些物種組成的生物或非生物因素。另一方面,S. sinensis被認為是真正的菌根真菌廣適者,可以與多種不同的真菌相關,這些真菌在功能上是可以互換的。因此,通過與大量不同的真菌相關聯,S. sinensis可能具有廣泛的分佈和大量的種群。 | zh_TW |
| dc.description.abstract | Spiranthes sinensis is one of the most frequently seen orchid species in Taiwan. However, little is known about the diversity of its mycorrhizal fungi and whether mycorrhizal fungal specificity may be involved in its commonness. In this study, the mycorrhizal fungi of S. sinensis in Taiwan were investigated for a better understanding of the diversity and ecological functioning of the fungal symbiont. Adult plants were collected at seven sites, five in Taipei City and two in Hualien County. In addition, seed packets were buried at four sites in Taipei City and retrieved four months later to get protocorms. Mycorrhizal fungi were isolated using the peloton isolation method, and the isolates were identified by combining morphology and molecular phylogenetic analyses. A symbiotic seed germination test was conducted using representative isolates of each fungal species. From 39 adult plants, 473 isolates were isolated. Among these isolates, 53.3% belonged to the genus Tulasnella (Basidiomycota), 46.7% to Rhizoctonia (Basidiomycota), and only two isolates were species of Ochroconis (Ascomycota). Four species of Tulasnella were identified as Tulasnella deliquescens clade A, T. cumulopuntioides, “T. tubericola”, Tulasnella sp. TTW1, and seven species of Rhizoctonia were recognized as Rhizoctonia sp. AG-A, AG-Fb, AG-G, AG-L, RTW1, RTW2, and RTW3. Tulasnella spp. and Rhizoctonia spp. were isolated from 64.1 % and 59.0 % of adult plants, respectively. Tulasnella deliquescens clade A was most frequently isolated (from 56.4 % of adult plants) and was present in all study sites except from a single one. Molecular phylogenetic analyses of T. deliquescens clade A revealed that this species was divided into two clades, indicating cryptic species. Unexpectedly, strains of Rhizoctonia were isolated from all study sites, and in a single site., all isolates belonged to this genus. Except for this single collection site, significant differences among the species composition of mycorrhizal fungi between study sites of Taipei and Hualien were not observed. From 13 protocorms, 35 isolates were isolated. Among these isolates, 88.6% belonged to Tulasnella and 11.4% to Rhizoctonia. These fungi were identified as T. deliquescens clade A and Rhizoctonia sp. AG-G and RTW1. At three study sites, T. deliquescens clade A was predominant. In symbiotic seed germination test, all these isolated fungi were proven to be mycorrhizal fungi except for Ochroconis spp. In addition, T. deliquescens clade A, T. cumulopuntioides, “T. tubericola” and Rhizoctonia sp. AG-A, AG-Fb, AG-G, AG-L, RTW2 supported the protocorm development and led to leaf emergence. In this study, it is revealed that T. deliquescens clade A is predominant as mycorrhizal fungi in the roots and in protocorms of S. sinensis in Taiwan, which is similar to the result of studies on mycorrhizal fungi of S. australis in Japan. However, Rhizoctonia spp. are also main mycorrhizal fungi of S. sinensis, which were isolated from more than half of adult plants. Therefore, compared to the species composition of mycorrhizal fungi of S. australis in Japan, the mycorrhizal fungal species composition of S. sinensis in Taiwan is different. Further studies are necessary to elucidate the biotic or abiotic factors which influence these species compositions. On the other hand, S. sinensis is assumed to be a true mycorrhizal generalist, which can associate with a broad range of different fungi and these fungi are functionally interchangeable. Therefore, S. sinensis may be able to have a wide distribution and large population by associating with a large number of different fungi. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:37:48Z (GMT). No. of bitstreams: 1 U0001-1502202119364300.pdf: 4169778 bytes, checksum: 64aa496babbbae2043920028f411daf7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 ..I Acknowledgement ..III Abstract in Chinese ..IV Abstract in English ...VI Chapter 1: Introduction ..1 Chapter 2: Isolation from roots of adult plants and protocorms ..8 2.1 Materials and methods ..9 2.1.1 Study sites and study plant ..9 2.1.2 Isolation of mycorrhizal fungi from roots of adult plants ..9 2.1.3 Isolation of mycorrhizal fungi from protocorms ..11 2.1.4 Morphological and cytological observations ..12 2.1.5 Phylogenetic analyses ..13 2.1.6 Data analysis ..15 2.2 Results ..18 2.2.1 Morphological and cytological observations ..18 2.2.2 Phylogenetic analyses ..19 2.2.3 Isolations from roots and protocorms ..22 2.3 Discussion ..25 Chapter 3: Ability of isolates to be mycorrhizal fungi and to promote seed germination and subsequent growth ..51 3.1 Materials and methods ..52 3.2 Results ..55 3.3 Discussion ..56 Chapter 4: General discussion ..63 References ..71 Supplemental data ..90 | |
| dc.language.iso | en | |
| dc.subject | Tulasnella | zh_TW |
| dc.subject | 共生種子發芽試驗 | zh_TW |
| dc.subject | Rhizoctonia | zh_TW |
| dc.subject | 蘭花菌根真菌 | zh_TW |
| dc.subject | 分子系統發育學分析 | zh_TW |
| dc.subject | Phylogenetic analysis | en |
| dc.subject | Rhizoctonia | en |
| dc.subject | Symbiotic seed germination test | en |
| dc.subject | Tulasnella | en |
| dc.subject | Orchid mycorrhizal fungi | en |
| dc.title | 分離自綬草的菌根菌 | zh_TW |
| dc.title | Mycorrhizal fungi isolated from Spiranthes sinensis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阿部純一(Junichi Abe Peter),岡根泉(Izumi Okane),歐海仁(Hiran Anjana Ariyawansa) | |
| dc.subject.keyword | 蘭花菌根真菌,分子系統發育學分析,Tulasnella,Rhizoctonia,共生種子發芽試驗, | zh_TW |
| dc.subject.keyword | Orchid mycorrhizal fungi,Phylogenetic analysis,Tulasnella,Rhizoctonia,Symbiotic seed germination test, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202100700 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1502202119364300.pdf 未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
