Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤
dc.contributor.authorWei-Da Lyuen
dc.contributor.author呂威達zh_TW
dc.date.accessioned2021-06-17T03:37:45Z-
dc.date.available2020-03-02
dc.date.copyright2018-03-02
dc.date.issued2018
dc.date.submitted2018-02-10
dc.identifier.citation李佳如、張夆榕、林志憲、楊德新(2014)35 年生國產柳杉分等結構用材之機械性質評估。林產工業。33(2):61-70。
林志憲、李佳如、楊德新(2015)直交集成柳杉地板之物理與機械性質評估。林產工業。34(1):1-10。
邱仲呈 (2014) 數位影像相關法分析木材橫向拉伸力學行為。國立臺灣大學森林環境暨資源學系碩士論文。133頁。
Aicher, S., Z. Christian and M. Hirsch (2016a) Rolling shear modulus and strength of beech wood laminations. Holzforschung. 70(8): 773-781.
Aicher, S., M.Hirsch and Z. Christian (2016b) Hybrid cross-laminated timber plates with beech wood cross-layers. Construction and Building Materials. 124: 1007-1018.
Aicher, S, G. Dill-Langer (2000) Basic Considerations to Rolling Shear Modulus in Wooden Boards. Otto-Graf-Journal. 11: 157-165
Anderson, J., W. H. Peters, M. A. Sutton, W. F. Ranson, and T. C. Chu (1984) Application of digital correlation methods to rigid body mechanics. Optical Engineering, 22(6): 238–243.
ANSI/APA PRG32: (2012) Standard for performance-rated Cross-Laminated Timber. APA the Engineered Wood Association. 29pp.
ASTM D198 - 15 (2015) ASTM D198 - 15: Standard Test Methods of Static Tests of Lumber in Structural Sizes. American Society for Testing and Materials International. 28pp.
ASTM D3044-16 (2016) Standard test method for shear modulus of wood-based structural panels. American Society for Testing and Materials. 3pp.
ASTM D2718 - 00(2011)e1 (2011) Standard Test Methods for Structural Panels in Planar Shear (Rolling Shear). American Society for Testing and Materials International. 6pp.
APA the Enginnered Wood Association (2004) Technical Topics: True (Shear-Free) and Apparent Moduli of Elasticity. APA the Enginnered Wood Association. 4pp.
Blaß, H. J., and P. Fellmoser (2004) Design of solid wood panels with cross layers. 8th World Conference on Timber Engineering. Vol. 14. Lahti, Finland, June 2004.
Blaß H. J.,‎ C. Sandhaas (2017) Timber Engineering - Principles for Design. KIT Scientific Publishing. 658pp.
Bajzecerová, V. (2017) Bending Stiffness of CLT-Concrete Composite Members-Comparison of Simplified Calculation Methods. Procedia Engineering. 190: 15-20.
Bodig J. and B.A. Jayne (1993) Mechanics of Wood and Wood Composites. Krieger Publishing Company. 736pp.
Chu, T. C., W. F. Ranson, M. A. Sutton, and W. H. Peters (1985) Applications of digital-image correlation techniques to experimental mechanics. Experimental Mechanics. 25(3): 232–244.
Ehrhart, T., Brandner, R., Schickhofer, G., & Frangi, A. (2015) Rolling shear properties of some European timber species with focus on cross laminated timber (CLT): test configuration and parameter study. International Network on Timber Engineering Research: Proceedings of Meeting 48. Vol 48: 61-76. Šibenik, Croatia, August, 2015.
EN 1995-1-1 + AC:2006 + A1:2008 (2008) Eurocode 5: Design of Timber Structures – Part 1-1: General – Common Rules and Rules for Buildings. European Committee for Standardization. 123pp.
BS EN 16351:2015 (2015) Timber structures - Cross laminated timber –Requirements. European Committee for Standardization. 106pp.
Fellmoser, P. and H. J. Blaß (2004) Influence of rolling shear modulus on strength and stiffness of structural bonded timber elements. CIB-W18 Meeting, Vol. 37. Edinburgh, Scotland, August 2004.
Flores, E. S., K. Saavedra, J. Hinojosa, Y. Chandra and R. Das (2016) Multi-scale modelling of rolling shear failure in cross-laminated timber structures by homogenisation and cohesive zone models. International Journal of Solids and Structures. 81: 219-232.
Gagnon S. and C. Pirvu eds. (2011) CLT handbook: cross-laminated timber. FPInnovations. 594pp.
Hassel, B. I., C. S. Modén and L. A. Berglund (2009) Functional gradient effects explain the low transverse shear modulus in spruce–Full-field strain data and a micromechanics model. Composites Science and Technology. 69(14): 2491-2496.
Jeong, G. Y., D. P. Hindman and A. Zink-Sharp (2010). Orthotropic properties of loblolly pine (Pinus taeda) strands. Journal of Materials Science. 45(21): 5820-5830.
Jeong, G. Y. and M. J. Park (2016) Evaluate orthotropic properties of wood using digital image correlation. Construction and Building Materials, 113: 864-869.
Keunecke, D., W. Sonderegger, K. Pereteanu, T. Lüthi and P. Niemz (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology. 41(4): 309.
Keunecke, D., S. Hering and P. Niemz (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Science and Technology. 42(8): 633-647.
Lam, F., Y. Li and M. Li, (2016). Torque loading tests on the rolling shear strength of cross-laminated timber. Journal of Wood Science. 62(5): 407-415.
Li, M. (2017). Evaluating rolling shear strength properties of cross-laminated timber by short-span bending tests and modified planar shear tests. Journal of Wood Science. 63(4): 331-337.
McCormick, N., and J. Lord (2010) Digital image correlation. Materials Today, 13(12): 52-54.
OIB CUAP (Common Understanding of Assessment Procedure) (2005): Solid wood slab element to be used as a structural element in buildings. ETA request no. 03.04/06. Austrian Institute of Construction Engineering (Österreichisches Institut für Bautechnik, OIB). 28 p.
Peters, W. H. and W. F. Ranson (1982) Digital imaging techniques in experimental stress analysis. Optical Engineering. 21(3): 427–431.
Saeed M. (2008) Finite element analysis: theory and Appelication with ANSYS. Pearson Educaition, Inc. 868pp.
Sebera, V., L. Muszyński, J. Tippner, M. Noyel, T. Pisaneschi and B. Sundberg (2013) FE analysis of CLT panel subjected to torsion and verified by DIC. Materials and Structures. 48(1-2): 451-459.
Sutton, M. A., W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill (1983) Determination of displacements using an improved digital correlation method. Image and Vision Computing. 1(3): 133–139.
Sutton, A. M., J.-J. Orteu, H. W. Schreier (2009) Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer. 321pp.
Serrano, E. and B. Enquist (2010) Compression Strength perpendicular to grain in Cross-Laminated timber (CLT). World Conference on timber Engineering. The Wood Technology Society, Riva del Garda. August 2010.
Timoshenko, S. P., and J. N. Goodyear (1970) Elasticity theory. Mcgraw-Hill. 567pp
Ukyo, S., H. Ido, H. Nagao, and H. Kato (2010) Simultaneous determination of shear strength and shear modulus in glued-laminated timber using a full-scale shear block specimen. Journal of Wood Science, 56(3): 262-266.
Zink, A. G., R. W. Davidson, R. B. Hanna (1995) Strain measurement in wood using a digital image correlaiton technique. Wood And Fiber Science 27(4): 346-359.
Zhou, Q., M. Gong, Y. H. Chui and M. Mohammad (2014) Measurement of rolling shear modulus and strength of cross laminated timber fabricated with black spruce. Construction and Building Materials. 64(2): 379-386.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69992-
dc.description.abstract直交集成材 (Cross-Laminated Timber, CLT) 是一種利用日益增加的木質工程材料,由多層直交排列的集成元 (Laminate) 單板膠合組成,利用性廣泛,可在牆、樓板與屋頂多處場合中使用,更是許多高層木質建築的組成構件。
在面外彎曲的場合中,直交集成材的滾動剪力性質為一重要的弱點,滾動剪力定義為弦徑面 (Radical-Tangential) 上垂直纖維的剪應力。木材側向的剪力剛性與強度較纖維長軸方向的力學性質來的弱,因此會導致具有直交層之CLT在這彎曲時產生較大的撓曲,且影響整體的強度與可服務性。滾動剪力性質不同於木材小尺度RT面之性質,為大片材料受剪力之影響,其彈性性質除受木材本身之剪力性質影響亦會因其生長輪之分布不同而不同。
本研究為研究柳杉 (Cryptomeria japonica) CLT之滾動剪力性質與CLT在受彎曲時試材表面受力之影響,採用數位影像相關法 (Digital image correlation, DIC) 使用試驗時隨時攝影所得之影像數據進行比對分析應變。本次試驗採用短跨深比 (span to depth ratio) 3點荷重之試驗進行,主要試驗厚度為45 mm之CLT試材。
小型試材之剪力強度介於1.0 - 1.6 MPa之間,平均為1.4 MPa,經由DIC所得之應變在線性區間內計算所得之滾動剪力模數平均為115.3MPa,大小介於50 -200 MPa左右,且依不同之生長輪排列型態、秋材率而有所不同。彎曲性質方面,因剪力造成之較大撓曲,試材之視彈性模數僅有約2 – 3 GPa。
剪應變最高者多為生長輪之春材位置,在差異較大者春材有秋材部分的5 – 10倍之差異。除春秋材外,試材內部節的缺點造成之應力集中亦會顯示在應變分布圖中。在較大荷重時,水平方向之正應變 (exx) 會交替出現拉伸與壓縮之區間,試材破壞的位置多在此位置。春材與試材膠合面之高應變在試驗之早期即可觀察到,若出現在膠合面時,試材有高比例會在此位置產生初始之裂縫,或是滾動剪力破壞發生在此位置附近,顯示此方法有發現試材之缺點的潛力。
zh_TW
dc.description.abstractIn recent years, the utilization of engineering wood panel, Cross-Laminated Timber (CLT), has become popular. It is suitable for floor, roof, and wall applications and has been used in many tall timber buildings. However, the rolling shear properties of CLT is the critical mechanical properties in out-of-plane bending situation.
Rolling shear is defined as the shear stress in the radical-tangential (rt) plane perpendicular to the grain. Comparing to the longitudinal properties of wood, transversal properties is much lower. Because of the lower mechanical properties of the cross layer, CLT will has a larger deflection when it is subjected to bending and affect its strength and serviceability. Rolling shear is different from the smaller scale shear properties of wood. It is the reaction of the panel subjected to shear. It depends on the primary shear properties of wood, growth ring orientation and so on.
In order to understand the reaction of rolling shear properties in CLT, Japan cedar (Cryptomeria japonica) were used in CLT manufacturing. Digital image correlation method (DIC) was used to analysis the strain distribution on the surface of specimens. The central concentrated (3-point) bending test was carried on the CLT beam with a span-to-depth-ratio of eight and 45mm in thickness.
Shear strength of the specimens is ranged from 1.0 to 1.6 MPa with average of 1.4 MPa. Rolling shear modulus is ranged from 50 to 200 MPa with average of 115.3MPa by DIC method in the elastic range. The results are vary from growth-ring pattern and the latewood ratio. The apparent modulus of elastic shows a larger deflection due to shear distortion ranged from 2 - 3 GPa.
The largest shear strain occurred mostly in earlywood of growth ring, with significant 5 - 10 times difference in some specimens. Beside above, the stress concentration caused by knots, for example, is also shown in the strain distribution contour. In addition, the horizontal normal-strain (exx) distribution under higher load will show higher strain in tension and compression zones alternatively. Rolling shear failure usually occurred at the large tension strain area. The large shear strain of earlywood area and bonding line were observed early at elastic range. If the large strain is observed near the bonding line, the initial crack or rolling shear failure would also occurred around it. It shows that DIC method could to find the defect of the material potentially.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:37:45Z (GMT). No. of bitstreams: 1
ntu-107-R04625039-1.pdf: 5603719 bytes, checksum: 58282972f476a9c9ef947eb7b00314ab (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 I
Abstract IV
目錄 VI
圖目錄 IX
附錄圖目錄 X
List of Figures XI
List of Appendix Figure XV
表目錄 XVII
附錄表目錄 XXI
List of Table XIX
List of Appendix Table XXII
I、 前言 1
II、 文獻回顧 3
(I) 數位影像相關法之原理與發展 3
1. 數位影像相關法之發展 3
2. 數位影像相關法之原理 3
3. 數位影像相關法應變分析 5
(II) 數位影像相關法輔助有限元素分析 6
(III) 數位影像相關法用於分析工程材料之回顧 7
(IV) 直交集成材之介紹 10
(V) 滾動剪力之研究回顧 11
(VI) 直交集成材理論 15
1. 機械接合梁理論 15
2. 剪力類比法 16
3. 複合理論 19
III、 材料與方法 20
(I) 試驗設備 20
(II) 試驗方法 22
1. 荷重、位移與應變量測 23
2. 實木預備試驗 23
3. 小型直交集成材梁彎曲試驗 23
4. 大尺寸CLT梁彎曲試驗 25
(III) 數據分析 26
1. 應變集中量化分析 26
2. 剪力彈性性質 27
3. 彎曲彈性性質 29
4. 基準應變分布曲線 30
IV、 結果與討論 31
(I) 實木預備試驗 31
(II) 彎曲試驗強度與彈性模數 32
1. 剪力模數與強度 32
2. 彈性模數與最大彎曲應力 38
3. 強度與彈性模數之相關性 44
(III) 破壞型態 47
(IV) 應變分布 55
1. 高應變位置與破壞點 55
2. 應變數值分析 61
3. 基準應變分布曲線 63
(V) 大尺寸CLT試材應變分布 69
V、 結語 71
參考文獻 73
附錄 78
附錄 A、 不同直交集成材理論所得之強度對照 78
附錄 B、 彎曲試驗之荷重位移曲線 80
附錄 C、 數位影像分析法之應變分布圖 83
dc.language.isozh-TW
dc.subject直交集成材zh_TW
dc.subject應變分布zh_TW
dc.subject數位影像相關法zh_TW
dc.subject滾動剪力zh_TW
dc.subjectrolling shearen
dc.subjectstrain distributionen
dc.subjectCross-laminated timberen
dc.subjectdigital image correlationen
dc.title數位影像相關法分析直交集成材之滾動剪力性質zh_TW
dc.titleUsing Digital Image Correlation Method to Investigate the Rolling Shear Properties of Cross-Laminated Timberen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee葉仲基,羅盛峰,張豐丞
dc.subject.keyword直交集成材,滾動剪力,數位影像相關法,應變分布,zh_TW
dc.subject.keywordCross-laminated timber,rolling shear,digital image correlation,strain distribution,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201800414
dc.rights.note有償授權
dc.date.accepted2018-02-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved