請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6994完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李克強(Eric Lee) | |
| dc.contributor.author | Li-Yang Chang | en |
| dc.contributor.author | 張立揚 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:23:22Z | - |
| dc.date.available | 2014-08-22 | |
| dc.date.available | 2021-05-17T09:23:22Z | - |
| dc.date.copyright | 2012-08-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-21 | |
| dc.identifier.citation | Ai, Y. and Qian, S. Dc dielectrophoretic particle-particle interactions and their relative motions. Journal of Colloid and Interface Science, 346(2):448-454, 2010.
Anderson, J.L. Concentration dependence of electrophoretic mobility. Journal of Colloid and Interface Science, 82(1):248-250, 1981. Anderson, J.L. Effect of nonuniform zeta potential on particle movement in electric fields. Journal of Colloid and Interface Science, 105 (1):45-54, 1985. Boyd, J.P. Chebyshev and Fourier spectral methods. Dover Publications, Inc, 2001. Brinkman, H.C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, A1 (1):27-34, 1947. Canuto, C.; Hussaini, M.Y.; A., Quarteroni, and Zang, T.A. Spectral methods: Fundamentals in single domains. Springer, 2006. Carey, G.F. and Finlayson, B.A. Orthogonal collocation on finite elements. Chemical Engineering Science, 30(5-6):587-596, 1975. Chen, S.B. Axisymmetric motion of multiple composite spheres: Solid core with permeable shell, under creeping flow conditions. Physics of fluids, 10(7):1550, 1998. Chen, S.B. and Keh, H.J. Electrophoresis in a dilute dispersion of colloidal spheres. AIChE journal, 34(7):1075-1085, 1988. Chen, S.B. and Keh, H.J. Axisymmetric electrophoresis of multiple colloidal spheres. Journal of Fluid Mechanics, 238(1):251-276, 1992. Derjaguin, B.V. and Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 14(6): 633-662, 1941. Ennis, J. and White, L.R. Electrophoretic mobility of a semi-dilute suspension of spherical particles with thick double layers and low zeta potentials. Journal of Colloid and Interface Science, 185(1): 157-173, 1997. Ennis, J.; Shugai, A.A., and Carnie, S.L. Dynamic mobility of two spherical particles with thick double layers. Journal of Colloid and Interface Science, 223(1):21-36, 2000. Fuoss, R.M. Polyelectrolytes. Science, 108(2812):545-550, 1948. Grün, F.; Jardat, M.; Turq, P., and Amatore, C. Relaxation of the electrical double layer after an electron transfer approached by brownian dynamics simulation. Journal of Chemical Physics, 120 (20):9648, 2004. Happel, J. and Brenner, H. Low Reynolds number hydrodynamics. Martinus Nijhoff, 1983. He, Y.Y. and Lee, E. Electrophoresis in concentrated dispersions of charged porous spheres. Chemical Engineering Science, 63(23): 5719-5727, 2008. Hermans, J.J. Sedimentation and electrophoresis of porous spheres. Journal of Polymer Science, 18(90):527-534, 1955. Hermans, J.J. and Fujita, H. Electrophoresis of charged polymer molecules with partial free drainage. Koninkl. Ned. Akad. Wetenschap. Proc. B, 58:162-187, 1955. Ho, A.K.; Perera, J.M., and Stevens, G.W. The effect of protein concentration on electrophoretic mobility. Journal of Colloid and Interface Science, 224(1):140–147, 2000. Hsu, H.P. and Lee, E. Electrophoresis of a single polyelectrolyte: Nonlinear effect of full poisson equation. under review, 2012a. Hsu, H.P. and Lee, E. Counterion condensation of a polyelectrolyte. Electrochemistry Communications, 15(1):59-62, 2012b. Hsu, J.P. and Yeh, L.H. Electrophoresis of two identical rigid spheres in a charged cylindrical pore. The Journal of Physical Chemistry B, 111(10):2579-2586, 2007. Hsu, J.P.; Ku, M.H., and Kao, C.Y. Electrophoresis of two identical cylindrical particles along the axis of a cylindrical pore. Industrial & engineering chemistry research, 44(5):1105-1111, 2005. Hunter, R.J.; White, L.R., and Chan, D.Y.C. Foundations of colloid science, volume 1. Clarendon Press Oxford, 1987. Kang, K.H. and Li, D. Dielectric force and relative motion between two spherical particles in electrophoresis. Langmuir, 22(4):1602-1608, 2006. Keh, H.J. and Chen, S.B. Particle interactions in electrophoresis: I. motion of two spheres along their line of centers. Journal of Colloid and Interface Science, 130(2):542-555, 1989a. Keh, H.J. and Chen, S.B. Particle interactions in electrophoresis: II. motion of two spheres normal to their line of centers. Journal of Colloid and Interface Science, 130(2):556-567, 1989b. Keh, H.J. and Chen, S.B. Particle interactions in electrophoresis: V. motion of multiple spheres with thin but finite electrical double layers. Journal of Colloid and Interface Science, 158(1):199-222, 1993. Keh, H.J. and Liu, C.P. Electric conductivity and electrophoretic mobility in suspensions of charged porous spheres. The Journal of Physical Chemistry C, 2010. Khair, A.S. and Squires, T.M. Ion steric effects on electrophoresis of a colloidal particle. Journal of Fluid Mechanics, 640:343-356, 2009. Levine, S. and Neale, G.H. The prediction of electrokinetic phenomena within multiparticle systems. i. electrophoresis and electroosmosis. Journal of Colloid and Interface Science, 47(2):520-529, 1974. Lundgren, T.S. Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics, 51(02):273-299, 1972. Lyklema, J. Fundamentals of interface and colloid science, volume 4. Academic Press, 2005. Manning, G.S. Limiting laws and counterion condensation in polyelectrolyte solutions i. colligative properties. The Journal of Chemical Physics, 51(3):924-933, 1969. Morse, P.M. and Feshbach, H. Methods of theoretical physics, volume 1. New York, McGraw Hill, 1953. Nield, D.A. and Bejan, A. Convection in porous media. Springer Verlag, 2006. O'Brien, R.W. Electro-acoustic effects in a dilute suspension of spherical particles. Journal of Fluid Mechanics, 190:71-86, 1988. O'Brien, R.W. The dynamic mobility of a porous particle. Journal of Colloid and Interface Science, 171(2):495-504, 1995. O'Brien, R.W. and White, L.R. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc., Faraday Trans. 2, 74:1607-1626, 1978. Ohshima, H. Electrophoresis of soft particles. Advances in Colloid and Interface Science, 62(2-3):189-235, 1995. Orszag, S.A. Comparison of pseudospectral and spectral approximations. Studies in Applied Mathematics, 51:253-259, 1972. Overbeek, J.T.G. Quantitative interpretation of the electrophoretic velocity of colloids. Advanced in Colloid Science, 3:97-135, 1950. Overbeek, J.T.G. and Stigter, D. Electrophoresis of polyelectrolytes with partial drainage. Recueil des Travaux Chimiques des Pays-Bas, 75(5):543-554, 1956. Paria, S. and Khilar, K.C. A review on experimental studies of surfac- tant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science, 110(3):75-95, 2004. Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 54 (3):468-488, 1984. Probstein, R.F. Physicochemical hydrodynamics. John Wiley & Sons, Inc., 1994. Reed, L.D. and Morrison, F.A. Hydrodynamic interactions in electrophoresis. Journal of Colloid and Interface Science, 54(1):117-133, 1976. Richardson, J. and Power, H. A boundary element analysis of creeping flow past two porous bodies of arbitrary shape. Engineering Analysis with Boundary Elements, 17(3):193-204, 1996. Russel, W.B.; Saville, D.A., and Schowalter, W.R. Colloidal dispersions. Cambridge University Press, 1992. Saad, Y. Sparskit: a basic tool kit for sparse matrix computations-version 2, 1994. Saad, Y. Iterative methods for sparse linear systems. SIAM, 2003. Saad, Y. and Schultz, M.H. Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856-869, 1986. Shilov, V.N.; Zharkih, N.I., and Borkovskaya, Y.B. Theory of nonequi- librium electrosurface phenomena in concentrated disperse system. 1. application of nonequilibrium thermodynamics to cell model. Colloid J., 43(3):434-438, 1981. Shugai, A.A.; Carnie, S.L.; Chan, D.Y.C., and Anderson, J.L. Electrophoretic motion of two spherical particles with thick double layers. Journal of Colloid and Interface Science, 191(2):357-371, 1997. Smouluchowski, M. von. Contribution à la théorie de l'endosmose électrique et de quelques phenoménes corrélatifs. Bulletin International de l'Académie des Sciences de Cracovie, 8:182-200, 1903. Squires, T.M. and Bazant, M.Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. Journal of Fluid Mechanics, 560:65-102, 2006. Stimson, M. and Jeffery, G.B. The motion of two spheres in a viscous fluid. Proceedings of the Royal Society of London. Series A, 111 (757):110-116, 1926. Swaminathan, T.N. and Hu, H.H. Particle interactions in electrophoresis due to inertia. Journal of Colloid and Interface Science, 273(1):324-330, 2004. Trefethen, L.N. Spectral methods in MATLAB. SIAM, 2000. Verwey, E. J and Overbeek, J.T.G. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, 1948. Viovy, J.L. Electrophoresis of dna and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys., 72:813-872, 2000. Wiersema, P.H.; Loeb, A.L., and Overbeek, J.T.G. Calculation of the electrophoretic mobility of a spherical colloid particle. Journal of Colloid and Interface Science, 22(1):78-99, 1966. Wu, R.M.; Chung, H.Y., and Lee, D.J. Hydrodynamic drag forces on two porous spheres moving along their centerline. Chemical Engineering Science, 59(4):943-950, 2004. Wu, R.M.; Lin, M.H.; Lin, H.Y., and Hsu, R.Y. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline. Journal of Colloid and Interface Science, 301(1):227-235, 2006. Yariv, E. Inertia-induced electrophoretic interactions. Physics of Fluids, 16:L24-L27, 2004. Yeh, L.H.; Liu, K.L., and Hsu, J.P. Importance of ionic polarization effect on the electrophoretic behavior of polyelectrolyte nanoparticles in aqueous electrolyte solutions. The Journal of Physical Chemistry C, 116(1):367-373, 2012. Zukoski, C.F. and Saville, D.A. Electrokinetic properties of particles in concentrated suspensions. Journal of Colloid and Interface Science, 115(2):422-436, 1987. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6994 | - |
| dc.description.abstract | 本研究以數值方法探討兩顆帶電多孔粒子間相互作用對電泳動度的影響,其中包含電雙層極化效應和電雙層重疊,且電雙層厚度和多孔粒子帶電量可任意。在外加弱電場假設下,高度耦合的電動力學方程組如電位、離子濃度和流場方程式將以微擾法線性化,並以 Chebyshev 擬譜方法求解線性化後的電動力學方程組。
為了釐清粒子間相互作用對電泳動度的影響,本研究於結果討 論探討重要的系統參數如電雙層厚度、多孔粒子固定電荷密度、摩擦係數、與粒子間距對電泳動度的影響。研究結果發現,除了相同粒子間有相互作用外,當電雙層重疊時,極化效應的影響使粒子愈靠近其電泳動度不增反降。此外在高度電雙層重疊下,粒子的電泳動度甚至會低於同情況下的單一粒子。此特別的行為是過去相關研究忽略電雙層重疊或極化效應所無法觀察到的現象,暗示著此兩個因素的重要性。本研究可作為探討均質聚電解質懸浮液電動力學現象的基礎膠體科學研究。 | zh_TW |
| dc.description.abstract | Electrophoresis of two charged porous spheres moving along their line of centers is investigated theoretically, where overlapping and polarization effect of electric double layers are both taken into account. The thickness of electric double layer and fixed charge density of porous spheres are arbitrary. The coupling equations of electric potential, ion concentration, and flow field are linearized by assuming that the external electric field is weak. A pseudo-spectral method based on Chebyshev polynomials is applied to numerically solve the resulting electrokinetic equations.
To clarify the effect of particle interactions on the electrophoretic mobility, the effects of key parameters are examined such as the double layer thickness, fixed charge density, friction coefficient of porous particles, and surface distance between particles. The most curial finding, besides the non-zero interactions between identical particles, is that particle mobility decreases as double layer of two particles touched due to the polarization effect on the role of electric interactions. More interesting findings is that particle mobility may lower than that of the single one when high double layer overlapping is consideration. These findings was not investigated in the corresponding studies of two particle interactions where overlapping of electric double layers or polarization effect is neglected, indicating the importance of these two factors. Particle interactions between two charged porous particles can be used to describe homogeneous concentrated suspensions of polyelectrolyte in a fundamental aspect of colloid science. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:23:22Z (GMT). No. of bitstreams: 1 ntu-101-R99524059-1.pdf: 5662371 bytes, checksum: 7d2c944b8b2f476ecf7531af5a3c0685 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iv 英文摘要 vi 目錄 viii 表目錄 xii 圖目錄 xiii 符號說明 xvii 1 緒論 1 1.1 背景知識 3 1.1.1 電雙層 3 1.1.2 電泳理論 5 1.2 多孔膠體粒子 7 1.2.1 流體穿透 9 1.3 粒子間相互作用 9 1.4 研究動機與目的 11 1.5 論文架構 11 2 文獻回顧 12 2.1 電泳理論文獻 12 2.2 單一多孔粒子電泳文獻 13 2.3 粒子間交互作用下的電泳文獻 14 3 理論分析 17 3.1 系統描述 17 3.2 電動力學方程組 19 3.2.1 電位方程式 19 3.2.2 濃度場方程式 20 3.2.3 流場方程式 21 3.3 邊界條件 22 3.4 無因次化 23 3.5 線性微擾法 25 3.5.1 平衡態 26 3.5.2 擾動態 27 3.6 電泳動度計算 30 4 數值方法 32 4.1 求解電動力學方程組 32 4.1.1 譜方法 32 4.1.2 空間映射 40 4.1.3 區域分割法 42 4.1.4 牛頓法 42 4.1.5 廣義最小殘值法 45 4.2 求解電泳動度 46 4.2.1 數值微分 46 4.2.2 數值積分 46 4.3 特殊處理 48 4.3.1 數值奇異點處理方法 48 4.3.2 雙球座標無窮遠點處理方法 53 4.3.3 拆子問題法 53 4.4 計算流程 55 5 雙多孔球同軸電泳結果討論 57 5.1 程式正確性驗證 57 5.2 固定電荷密度(Q_fix)與表面電位(phi_s)的轉換關係 60 5.3 固定電荷密度(Q_fix)的影響 63 5.4 粒子間距(h^∗)的影響 66 5.5 電雙層厚度((kappa a)^{-1})的影響 70 6 結論與未來展望 79 A 雙球座標簡介 81 B 數學推導 85 B.1 第三章中流場方程式推導 85 參考文獻 87 | |
| dc.language.iso | zh-TW | |
| dc.title | 兩多孔性膠體粒子間交互作用下之同軸電泳現象 | zh_TW |
| dc.title | Pair Interaction in Electrophoresis of Charged Porous Particles Moving along Their Centerline | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙玲(Ling Chao),游佳欣(Jiashing Yu) | |
| dc.subject.keyword | 電泳現象,多孔膠體粒子,粒子間交互作用,極化效應,電雙層重疊,擬譜方法, | zh_TW |
| dc.subject.keyword | electrophoresis,charged porous particles,particle interactions,polarization effect,double-layer overlap,pseudo-spectral method, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
