請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69927完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
| dc.contributor.author | Yen-An Chen | en |
| dc.contributor.author | 陳彥安 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:34:29Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69927 | - |
| dc.description.abstract | 本研究利用冰晶法進行定壓下甲烷與二氧化碳氣體水合物的合成、解離以及置換的動力學行為研究,並探討添加乙醇造成的影響。本研究中的乙醇液體並無直接與冰晶樣品接觸,而是以揮發後蒸氣的形式吸附於冰晶樣品上。本研究探討的溫度範圍涵蓋−15至−1.0 °C,甲烷水合物生成於16.65 MPa,二氧化碳水合物生成及置換於2.10 MPa,解離實驗則操作於一大氣壓下。合成水合物用的冰晶則是使用直徑介於180到250 μm的冰晶顆粒。 研究結果顯示,乙醇蒸氣對於甲烷水合物的合成具有動力學上的促進效果。對於沒有添加乙醇的系統而言,甲烷水合物的轉化率在24小時約為0.26,而對於添加乙醇的系統則會在4小時內上升到0.80。由乙醇促進生成的甲烷水合物,經過拉曼光譜以及粉末X光繞射可以確定其結構與一般的甲烷水合物相同,為sI結構。而在解離方面,乙醇對於甲烷水合物的解離亦具有抑制自保效應的效果(即加速解離)。當甲烷水合物的轉化率大於0.3時,能觀察到水合物的自保效應,解離速度較慢。但是當乙醇添加於系統中時,在一小時內水合物可以幾乎完全解離。而乙醇對於二氧化碳的合成影響則會受到溫度影響。當溫度高於−9 °C時,乙醇扮演動力學抑制劑的角色,但當溫度低於−9 °C時,乙醇則是具有動力學促進劑的效果。乙醇在二氧化碳的解離的動力學上一樣具有抑制自保效應的效果。 在置換的研究中,當溫度約為−2 °C時,乙醇可以大幅提升甲烷釋放的速度。然而僅有部份釋放出的是被二氧化碳置換。當溫度約為−14 °C時,甲烷釋放的速度與二氧化碳置換為水合物的總量相較−2 °C時大幅提高。但添加乙醇則無明顯影響。 | zh_TW |
| dc.description.abstract | In this study, effect of adding ethanol on the kinetics of methane, carbon dioxide synthesis, dissociation, and replacement were explored at constant pressure using ice seed method. In this study, liquid ethanol did not direct contact with ice powder, but adsorbed on ice powder from vapor phase. The experimental temperature was ranging from −15 to −1.0 °C. The formation pressure of methane hydrate was 16.65 MPa and that of carbon dioxide hydrate was 2.10 MPa. For the dissociation experiments, the operating pressure was at atmospheric pressure. The ice powder with diameter ranging from 180 to 250 μm was used for hydrate synthesis. Our results indicated that the addition of ethanol could promote the kinetics of methane hydrate formation. For the system without ethanol additive, the conversion was about 0.26 in 24 hours, and for the ethanol added system, the conversion rose to 0.80 in 4 hours. The methane hydrate formation promoted by ethanol vapor was analyzed by Raman spectroscopy and powder X-ray diffraction and the structure was determined to be sI structure, which was same with simple methane hydrate. For hydrate dissociation, ethanol would suppress the self-preservation phenomena (which means enhancement of the dissociation rate). When the conversion of methane hydrate was higher than 0.3, the self-preservation could be observed and had a slow dissociation rate. However, when ethanol was added into the system, almost all the hydrate dissociated in the first hour of dissociation stage. The effect of ethanol on the formation of carbon dioxide would depend on the temperature. When the temperature was higher than −9 °C, ethanol acted as a kinetic inhibitor, but when the temperature was lower than −9 °C, ethanol acted as a kinetic promotor. For the dissociation of carbon dioxide, ethanol also suppressed the self-preservation phenomena. In the replacement research, when the temperature was about −2 °C, ethanol additive could enhance the methane releasing rate. However, only part of released methane was replaced by carbon dioxide. When the temperature was about −14 °C, the methane releasing rate and the amount of carbon dioxide that encaged in the hydrate were much higher than that at −2 °C. However, the effect of adding ethanol was no obvious. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:34:29Z (GMT). No. of bitstreams: 1 U0001-1708202022324300.pdf: 5011673 bytes, checksum: 0f8cdfd03489d872552d18b43e70a4aa (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 IV Abstract V Table of Contents VII Figures X Tables XIV Chapter 1 Introduction 1 1.1 Fundamental properties of gas hydrate 1 1.2 Research aspects on gas hydrate 3 1.2.1 Flow assurance 4 1.2.2 Gas storage and transportation 4 1.2.3 Natural gas hydrate as a natural gas resource 5 1.3 Objective and scope 7 Chapter 2 Literature review 12 2.1 Thermodynamic of clathrate hydrate 12 2.2 Laboratory hydrate synthesis methods 15 2.3 Instrumental analysis of hydrate 17 2.4 Effect of alcohol on kinetics of gas hydrate 23 2.5 Hydrate replacement experiment 25 Chapter 3 Experimental details 34 3.1 Materials 34 3.2 Apparatus 34 Chapter 4 Effect of ethanol on methane hydrate formation and dissociation 39 4.1 Procedure for methane hydrate formation and dissociation 39 4.2 Kinetic effect of ethanol on the formation of methane hydrate 42 4.3 Kinetic effect of ethanol on the dissociation of methane hydrate 43 4.4 Discussion on the effect of ethanol 46 4.5 Structure of methane hydrate catalyzed by ethanol vapor 48 Chapter 5 Effect of ethanol on carbon dioxide hydrate formation and dissociation 64 5.1 Procedure for carbon dioxide hydrate formation and dissociation 64 5.2 Kinetic effect of ethanol on formation of carbon dioxide hydrate 65 5.3 Kinetic effect of ethanol on dissociation of carbon dioxide hydrate 68 5.4 Discussion on the effect of ethanol 68 Chapter 6 Effect of ethanol on CO2 / CH4 replacement experiments 81 6.1 Methane hydrate carbon dioxide sweeping experiment 81 6.2 Methane released during the sweeping process 86 6.3 Comparing with previous literatures 89 Chapter 7 Conclusion 97 References 99 Appendix i Appendix A. PXRD refinement details i Appendix B. Gas chromatography analysis iv Appendix C. Measurement of volume in the reaction vessel viii Appendix D. Calculation of density of gas mixture xi | |
| dc.language.iso | en | |
| dc.subject | 置換 | zh_TW |
| dc.subject | 氣體水合物 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 乙醇 | zh_TW |
| dc.subject | 動力學 | zh_TW |
| dc.subject | Methane | en |
| dc.subject | Replacement | en |
| dc.subject | Kinetic | en |
| dc.subject | Ethanol | en |
| dc.subject | Carbon dioxide | en |
| dc.subject | Gas hydrate | en |
| dc.title | 乙醇對於甲烷與二氧化碳水合物的生成、解離及置換動力學影響 | zh_TW |
| dc.title | Kinetic Effect of Ethanol on the Formation, Dissociation and Replacement of Methane and Carbon Dioxide Hydrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林祥泰(Shiang-Tai Lin),陳延平(Yan-Ping Chen),蘇至善(Chie-Shaan Su),李明哲(Ming-Jer Lee),汪上曉(Shan-Hill Wong) | |
| dc.subject.keyword | 氣體水合物,甲烷,二氧化碳,乙醇,動力學,置換, | zh_TW |
| dc.subject.keyword | Gas hydrate,Methane,Carbon dioxide,Ethanol,Kinetic,Replacement, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU202003876 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202022324300.pdf 未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
