請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69921完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊爵因 | |
| dc.contributor.author | Guan-Yi Yu | en |
| dc.contributor.author | 余冠毅 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:34:11Z | - |
| dc.date.available | 2022-03-02 | |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-12 | |
| dc.identifier.citation | Abd-Elsalam, K., Bahkali, A., Moslem, M., Amin, O. E., and Niessen, L. 2011. An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. International journal of molecular sciences 12:3459-3472.
Almasi, M., Dehabadi, S. H., Moradi, A., Eftekhari, Z., Ojaghkandi, M. A., and Aghaei, S. 2013. Development and application of loop-mediated isothermal amplification assay for rapid detection of Fusarium oxysporum f. sp. lycopersici. Journal of Plant Pathology Microbiology 4:1-7. Amatulli, M. T., Spadaro, D., Gullino, M. L., and Garibaldi, A. 2012. Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology 134:401-408. Atkins, J., and Todd, E. 1959. White tip disease of rice. III. Yield tests and varietal resistance. Phytopathology 49:189-191. Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., and Frisse, L. M. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392:71-75. Cui, R., Zhao, L., and Zhong, G. 2010. A rapid method to detect Aphelenchoides ritzemabosi by PCR. Acta Agriculturae Universitatis Jiangxiensis 32:714-717. Devran, Z., Tülek, A., Mıstanoğlu, İ., Çiftçiğil, T. H., and Özalp, T. 2017. A rapid molecular detection method for Aphelenchoides besseyi from rice tissues. Australasian Plant Pathology 46:43-48. Floyd, R., Abebe, E., Papert, A., and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology 11:839-850. Fortuner, R. 1970. On the morphology of Aphelenchoides besseyi Christie, 1942 and A. siddiqii n. sp.(Nematoda, Aphelenchoidea). Journal of Helminthology 44:141-152. Fukano, H. 1962. Ecological studies on white-tip disease of rice plant caused by Aphelenchoides besseyi Christie and its control. Bulletin of the Fukuoka Agricultural Experiment Station 18:1-108. Geiser, D. M., del Mar Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A., and O’Donnell, K. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Pages 473-479 in: Molecular Diversity and PCR-detection of Toxigenic Fusarium Species and Ochratoxigenic Fungi. Springer. Ghosh, R., Nagavardhini, A., Sengupta, A., and Sharma, M. 2015. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris-wilt pathogen of chickpea. BMC research notes 8:40. Goto, M., Honda, E., Ogura, A., Nomoto, A., and Hanaki, K.-I. 2009. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 46:167-172. Huang, C., and Huang, S. 1972. Bionomics of white-tip nematode, Aphelenchoides besseyi in rice florets and developing grains. Botanical Bulletin of Academia Sinica 13:1-10. Huang, C., Huang, S., and Chiang, Y. 1979. Mode of reproduction and sex ratio of rice white-tip nematode, Aphelenchoides besseyi. Nematologica 25:255-260. Jagdale, G. B., and Grewal, P. S. 2002. Identification of alternatives for the management of foliar nematodes in floriculture. Pest Management Science 58:451-458. Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla‐López, R., Palomares‐Rius, J. E., and Wesemael, W. M. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14:946-961. Kanzaki, N., and Futai, K. 2002. A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4:35-41. Khokhar, L., and Jaffrey, A. 2002. Identification of sources of resistance against Bakanae and Foot rot disease in rice. Pakistan Journal of Agricultural Research 17:176-177. Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N., and Kanzaki, N. 2009. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99:1365-1369. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8:114-124. Lehman, P. 2004. Cost-benefits of nematode management through regulatory programs. Nematology: Advances and Perspectives 2:1133-1177. Leslie, J. F., and Summerell, B. A. 2008. The Fusarium laboratory manual. John Wiley & Sons. Li, B., Du, J., Lan, C., Liu, P., Weng, Q., and Chen, Q. 2013. Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology 135:903-911. Lilley, C. J., Kyndt, T., and Gheysen, G. 2011. Nematode resistant GM crops in industrialised and developing countries. Pages 517-541 in: Genomics and Molecular Genetics of Plant-Nematode Interactions. J. Jones, G. Gheysen and C. Fenoll, eds. Springer Netherlands, Dordrecht. Lin, B., Wang, H., Zhuo, K., and Liao, J. 2016. Loop-mediated isothermal amplification for the detection of Tylenchulus semipenetrans in soil. Plant Disease 100:877-883. Mancini, V., Murolo, S., and Romanazzi, G. 2016. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathology 65:691-703. McCuiston, J. L., Hudson, L. C., Subbotin, S. A., Davis, E. L., and Warfield, C. Y. 2007. Conventional and PCR detection of Aphelenchoides fragariae in diverse ornamental host plant species. Journal of Nematology 39:343-355. Niessen, L. 2013. Loop-mediated isothermal amplification-based detection of Fusarium graminearum. Methods in Molecular Biology 968:177-193. Niessen, L., and Vogel, R. F. 2010. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. International Journal of Food Microbiology 140:183-191. Niessen, L., Gräfenhan, T., and Vogel, R. F. 2012. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. International Journal of Food Microbiology 158:171-185. Nishizawa, T., and Yamamoto, S. 1951. Studies on the varietal resistance of rice plant to the nematode disease 'Senchu shingare byo'. II. A test of the leading varieties and part of breeding lines of rice plant in Kyoshu. Kyoshu Agric. Res. 8:91-92. Niu, J.-h., Guo, Q.-x., Jian, H., Chen, C.-l., Yang, D., Liu, Q., and Guo, Y.-d. 2011. Rapid detection of Meloidogyne spp. by LAMP assay in soil and roots. Crop Protection 30:1063-1069. Niu, J., Jian, H., Guo, Q., Chen, C., Wang, X., Liu, Q., and Guo, Y. 2012. Evaluation of loop‐mediated isothermal amplification (LAMP) assays based on 5S rDNA‐IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology 61:809-819. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28:e63. Peng, H., Peng, D., Hu, X., He, X., Wang, Q., Huang, W., and He, W. 2012. Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology 14:977-986. Rao, Y., Prasad, J., and Panwar, M. 1985. Nematode pests of rice in India. Non-insect Pest and Predators:65-71. Rim, S.-O., Lee, J.-H., Choi, W.-Y., Hwang, S.-K., Seok, J.-S., Lee, I.-J., Rhee, I.-K., and Kim, J.-G. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. Journal of Microbiology and Biotechnology 15:809-814. Rybarczyk-Mydłowska, K., Mooyman, P., van Megen, H., van den Elsen, S., Vervoort, M., Veenhuizen, P., van Doorn, J., Dees, R., Karssen, G., and Bakker, J. 2012. Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. Phytopathology 102:1153-1160. Sánchez-Monge, A., Janssen, T., Fang, Y., Couvreur, M., Karssen, G., and Bert, W. 2017. MtCOI successfully diagnoses the four main plant-parasitic Aphelenchoides species (Nematoda: Aphelenchoididae) and supports a multiple origin of plant-parasitism in this paraphyletic genus. European Journal of Plant Pathology:1-14. Togashi, K., and Hoshino, S. 2003. Trade-off between dispersal and reproduction of a seed-borne nematode, Aphelenchoides besseyi, parasitic on rice plants. Nematology 5:821-829. Tsavkelova, E. A., Bömke, C., Netrusov, A. I., Weiner, J., and Tudzynski, B. 2008. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genetics and Biology 45:1393-1403. Tsay, T., Cheng, Y., Cheng, H., Lin, Y., and Wu, W. 1995. Occurrence and control of nematode diseases on bulbous flowers. Plant Pathology Bulletin 4:180-192. Tsay, T., Cheng, Y., Teng, Y., Lee, M., Wu, W., and Lin, Y. 1998. Bionomics and control of rice white tip disease nematode, Aphelenchoides besseyi. Plant Protection Bulletin (Taipei) 40:277-286. Tudzynski, B., and Hölter, K. 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genetics and Biology 25:157-170. Tudzynski, B., Kawaide, H., and Kamiya, Y. 1998. Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Current Genetics 34:234-240. Vaidya, R., Macmil, S., Vyas, P., Ghetiya, L., Thakor, K., and Chhatpar, H. 2003. Biological control of Fusarium wilt of pigeonpea Cajanus cajan (L.) Millsp with chitinolytic Alcaligenes xylosoxydans. Indian Journal of Experimental Biology 41:1469-1472. Wang, F., Li, D., Wang, Z., Dong, A., Liu, L., Wang, B., Chen, Q., and Liu, X. 2014. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PloS One 9:e91591. Wang, K., Tsay, T., and Lin, Y. 1993. The occurrence of Aphelenchoides besseyi on strawberry and its ecology in Taiwan. Plant Protection Bulletin (Taipei) 35:14-29. Wiemann, P., Sieber, C. M., Von Bargen, K. W., Studt, L., Niehaus, E.-M., Espino, J. J., Huß, K., Michielse, C. B., Albermann, S., and Wagner, D. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens 9:e1003475. Wu, G.-L., Kuo, T.-H., Tsay, T.-T., Tsai, I. J., and Chen, P. J. 2016. Glycoside hydrolase (GH) 45 and 5 candidate cellulases in Aphelenchoides besseyi isolated from bird’s-nest fern. PloS One 11:e0158663. Youssef, M. 2014. The leaf and bud nematode, Aphelenchoides besseyi, its identification, economic importance and control measures. a review. Middle East Journal of Agriculture Research 3:461-464. Yu, P., and Tsay, T. 2004. Occurrence of a foliar nematode disease of fern in Taiwan. Plant Pathology Bulletin 13:35-44. Zhang, X., Zhang, H., Pu, J., Qi, Y., Yu, Q., Xie, Y., and Peng, J. 2013. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil. PloS One 8:e82841. Zhou, Q.-j., Cai, Y., Gu, J.-f., Wang, X., and Chen, J. 2017. Rapid and sensitive detection of Meloidogyne mali by loop-mediated isothermal amplification combined with a lateral flow dipstick. European Journal of Plant Pathology 148:755-769. 林杰妤. 2015. 水稻徒長病菌之生物特性: 殘存能力及致病之進程. 中興大學植物病理學系所學位論文. 洪元平. 1959. 臺灣稻葉白尖病. 植保會刊 1:104-109. 許晴情. 2013. 水稻徒長病菌: 開發鑑別性培養基, 建立病害評估平台及探討土壤接種源之角色. 中興大學植物病理學系所學位論文. 許晴情、賴明信、林宗俊、黃振文、陳啟予. 2013a. 稻種感染徒長病菌與成株水稻發生徒長病之關聯. 植物病理學會刊 22:381-388. 許晴情、賴明信、林宗俊、黃振文、陳啟予. 2013b. 建立水稻對徒長病菌之抗感性篩檢流程. 植物病理學會刊 22:291-299. 郭建志、廖君達. 2010. 中部地區水稻徒長病與線蟲白尖病之發生與調查. 臺中區農業改良場研究彙報 108:13-24. 郭建志、廖君達、黃冬青、陳又嘉、鍾嘉綾. 2014. 中部地區水稻徒長病發病情形, 病原檢測與抗藥性分析. 臺中區農業改良場研究彙報 125:11-28. 曾巧燕、林奕耀. 2005. 台灣地區葉芽線蟲 Aphelenchoides besseyi 族群之種內變異. 植物病理學會刊 14:67-75. 游培琪、蔡東纂. 2004. 山蘇花葉芽線蟲在台灣之發生. 植物病理學會刊 13:35-44. 黃㯖昌、朱盛祺. 2009. 臺灣水稻徒長病之發生與防治. 台灣水稻保護成果及新展望研討會專刊:29-43. 廖君達、郭建志. 2009. 水稻稻種及秧苗病蟲害管理. 植物種苗 11:1-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69921 | - |
| dc.description.abstract | 水稻之種子傳播性病害如水稻白尖病及水稻徒長病嚴重影響稻米產量。由於造成兩病之病原,水稻葉芽線蟲(Aphelenchoides besseyi)和水稻徒長病菌(Fusarium fujikuroi)皆能存於穀粒中,並於育苗時期感染水稻苗,若能於水稻育苗時期進行種苗篩選,則能有效管理此二病害於田間之發生。因此,開發快速分子檢測技術應用於育苗階段,對於健康種苗流程的建立至關重要。本研究利用恆溫圈環形核酸增幅法 (Loop-mediated isothermal amplification, LAMP) 建立兩病害之快速檢測技術,將其最佳化並應用於水稻種苗檢測。針對水稻葉芽線蟲之mtDNA COI與rDNA ITS 區塊共設計5組LAMP引子組,挑選其中增幅效率最佳之引子組AB-ID37,在反應溫度63oC下進行敏感性和專一性測試。敏感性結果顯示,反應時間為90分鐘可偵測出的最低濃度為103 copies/µl,且亦可於60分鐘內偵測出單隻線蟲抽取之核酸。專一性測試的結果,也證實無須擔心其他地上部植食性線蟲可能會造成之偽陽性反應。另外,在水稻苗上之應用性測試,則確認其偵測的敏感性可達到每株苗5隻。在水稻徒長病菌的偵測技術開發方面,針對其cps/ks gene共設計3組LAMP引子組。挑選增幅效率最佳之引子組CPS-ID4,在反應溫度63oC下進行敏感性和專一性測試。敏感性結果顯示,當目標核酸濃度為50 pg/μl以上時可在90分鐘的反應時間內被成功偵測。專一性測試的結果亦顯示本試驗技術可有效排除Fusarium屬中其他相近種之檢出。以人工接種之水稻苗進行應用性測試,顯示該技術可以成功偵測已受到濃度104 spores/ml感染但尚未發病之水稻苗。將此兩組LAMP引子組與前人開發之專一性PCR引子對比較,在敏感性方面雖無顯著優勢,但專一性遠高於傳統PCR檢測。將本研究中開發之LAMP引子組,搭配hydroxy naphthol blue (HNB) 和lateral flow strip之應用,皆可於偵測終端快速顯示偵測結果,有效減少完成檢測判讀所需時間,亦大幅提升本技術應用於水稻苗期檢測和植物檢疫的潛力。 | zh_TW |
| dc.description.abstract | Rice white tip disease caused by the leaf and bud nematode (Aphelenchoides besseyi) and the Bakanae disease caused by the fungus Fusarium fujikuroi are both seed-borne pathogen that result in huge yield-loss on rice worldwide. A rapid pathogen screening method that could be applied on symptomless rice seedling would effectively lower the diseases incidence in rice fields. The purpose of this study was to develop a loop-mediated isothermal amplification (LAMP) method for A. besseyi and F. fujikuroi detection. For the nematode detection, five sets of primers targeting COI gene region of mitochondial DNA or the ITS region of ribosome gene of A. besseyi were designed and the most efficient set named AB-ID37 was chosen for assay optimization. The AB-ID37 LAMP assay is capable of completing within 90 minutes with the detection sensitivity as low as 103 copies/µl of cloned plasmid DNA. The crude DNA of single nematode can be detected in 60 minutes with the assay. The AB-ID37 LAMP assay is with high specificity and is concern-free for false detection from amplifying other aboveground plant-parasitic nematodes. On the other hand, three primer sets targeting the cps/ks gene of F. fujikuroi were designed and the most efficient set, CPS-ID4, was chosen for Bakanae disease detection optimization. The CPS-ID4 LAMP assay is capable of completing within 90 minutes at the 50 pg/μl DNA detection sensitivity. The CPS-ID4 LAMP assay can distinguish F. fujikuroi from other closely related Fusarium spp. when tested with whole genomic DNA. Inoculums of several concentrations of nematodes and fungi on single rice seedling were also examined and the assay was shown to be effective with no false positive or negative results. Although these two LAMP assays did not show better sensitivity when comparing with other published PCR detection methods, they are more spieces-specific and suit better for detection and screening purposes. When hydroxy naphthol blue (HNB) and lateral flow strip were applied along with the LAMP reaction, the instant visual and result analysis shorten the overall assay completion time and highly increased the potentiality of this assay in field and quarantine applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:34:11Z (GMT). No. of bitstreams: 1 ntu-107-R04633012-1.pdf: 4313482 bytes, checksum: 4fd11387766720f029588aea40f2c59e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員會審定書....................................................................................................i
誌謝..............................................................................................................................ii 中文摘要..........................................................................................................................iii 英文摘要...........................................................................................................................v 目錄.................................................................................................................................vii 表次索引...........................................................................................................................x 圖次索引..........................................................................................................................xi 壹、引言...........................................................................................................................1 ㄧ、水稻葉芽線蟲 Aphelenchoides besseyi Christie.............................................1 二、水稻徒長病菌 Fusarium fujikuroi Nirenberg..................................................2 三、健康水稻種苗之重要性...................................................................................3 四、病原檢測技術...................................................................................................4 五、實驗設計及目標...............................................................................................5 貳、材料與方法...............................................................................................................7 一、線蟲採集、分離及培養...........................................................................7 二、真菌培養及孢子收集.......................................................................................7 三、核酸抽取..........................................................................................................7 A. 單隻線蟲核酸抽取.....................................................................................8 B. 真菌與水稻苗核酸抽取..............................................................................8 四、偵測目標基因挑選...........................................................................................8 A. 水稻葉芽線蟲.............................................................................................8 B. 水稻徒長病菌..............................................................................................9 C. PCR反應與膠體電泳................................................................................10 D. 目標PCR反應產物純化.................................................................11 E. 目標片段選殖............................................................................................11 F. 質體純化與定序........................................................................................12 G. 序列分析...................................................................................................12 五、與傳統PCR檢測比較....................................................................................12 A. 引子選擇與反應條件...............................................................................12 B. 專一性測試................................................................................................13 C. 敏感性測試................................................................................................14 六、LAMP檢測.....................................................................................................14 A. 引子設計與反應溶液...............................................................................14 B. 引子組挑選................................................................................................14 C. 專一性測試................................................................................................14 D. 泛用性測試...............................................................................................15 E. 敏感性測試................................................................................................15 F. 水稻苗應用性測試....................................................................................15 G. 顯色方法...................................................................................................16 參、結果.........................................................................................................................17 一、葉芽線蟲採集.................................................................................................17 二、水稻葉芽線蟲偵測目標基因挑選.................................................................17 三、水稻徒長病菌偵測目標基因挑選.................................................................18 四、傳統PCR檢測................................................................................................18 A. 水稻葉芽線蟲...........................................................................................18 B. 水稻徒長病菌............................................................................................18 五、水稻葉芽線蟲LAMP檢測............................................................................19 A. 引子設計與挑選.......................................................................................19 B. 專一性和泛用性測試................................................................................19 C. 敏感性測試................................................................................................19 D. 水稻苗應用性測試...................................................................................20 六、水稻徒長病菌LAMP檢測............................................................................20 A. 引子設計與挑選.......................................................................................20 B. 專一性和泛用性測試................................................................................20 C. 敏感性測試................................................................................................21 D. 水稻苗應用性測試...................................................................................21 肆、討論.........................................................................................................................23 伍、參考文獻.................................................................................................................28 陸、圖表.........................................................................................................................34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻徒長病 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 分子檢測技術 | zh_TW |
| dc.subject | 恆溫圈環形核酸增幅法 | zh_TW |
| dc.subject | 水稻白尖病 | zh_TW |
| dc.subject | Fusarium fujikuroi | en |
| dc.subject | rice | en |
| dc.subject | Aphelenchoides besseyi | en |
| dc.subject | loop-mediated isothermal amplification | en |
| dc.title | 水稻白尖病與徒長病之快速檢測技術建立及應用 | zh_TW |
| dc.title | Development and Application of a Rapid Detection Assay of White-tip Disease and Bakanae Disease on Rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫岩章,吳孟玲,陳啟予 | |
| dc.subject.keyword | 水稻,水稻白尖病,水稻徒長病,分子檢測技術,恆溫圈環形核酸增幅法, | zh_TW |
| dc.subject.keyword | rice,Aphelenchoides besseyi,Fusarium fujikuroi,loop-mediated isothermal amplification, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201800503 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
