請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69920完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李紅春 | |
| dc.contributor.author | Wan-Yin Lien | en |
| dc.contributor.author | 連婉吟 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:34:08Z | - |
| dc.date.available | 2021-03-02 | |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-12 | |
| dc.identifier.citation | 參考文獻
中央氣象局氣象科學研究院 (主編). (1981). 中國近五百年旱澇分布圖集. 中國:地圖出版社 李紅春, 顧德隆, 陳文寄, 袁道先, & 李鐵英. (1998). 高解析度洞穴石筍中穩定同位素應用——北京元大都建立後對森林資源的破壞δ13C記錄. 地質評論, 44(5), 456-463. 周厚雲, 劉淑華, 彭小桃, 鄧肖敏, 陳瓊, & 米小建. (2016). 中國季風區石筍氧同位素氣候指示意義: 主要爭議與幾個重要問題. 熱帶地理, 36(3), 448-456. 郭其蘊, 蔡靜寧, 邵雪梅, & 沙萬英. (2003). 東亞夏季風的年代際變率對中國氣候的影響. 地理學報, 58(4). 郭其蘊, 蔡靜寧, 邵雪梅, & 沙萬英. (2004). 1873~ 2000 年東亞夏季風變化的研究. 大氣科學, 28(2), 206-215. 張德二, & 劉傳志. (1993). 《中國近五百年旱澇分布圖集》. 續補 (1980—1992年). 氣象, 19(11), 41-45. 張德二, 李小泉, & 梁有葉. (2003). 《中國近五百年旱澇分布圖集》 的再續補 (1993—2000年). 應用氣象學報, 14(3), 379-384. 程海, 艾思本, 王先鋒, 汪永進, 孔興功, 袁道先, 張美良, 林玉石, 覃嘉銘 & 冉景丞. (2005). 中國南方石筍氧同位素記錄的重要意義. 第四紀研究, 25(2), 157-163. 曾令鋒. (1992). 廣西石灰岩地區的開發利用. 熱帶地理, 12(1), 77-82. Asikainen, M. (1981). State of disequilibrium between 238U, 234U, 226Ra and 222Rn in groundwater from bedrock. Geochimica et Cosmochimica Acta, 45(2), 201-206. Baker, A., Smith, C., Jex, C., Fairchild, I. J., Genty, D., & Fuller, L. (2008). Annually laminated speleotherms: a review. International Journal of Speleology, 37(3), 193-206. Baldini, J. U., McDermott, F., Hoffmann, D. L., Richards, D. A., & Clipson, N. (2008). Very high-frequency and seasonal cave atmosphere variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters, 272(1), 118-129. Breitenbach, S., Fernandez, D., Adkins, J., Mingram, B., Oberhänsli, H., & Haug, G. (2005). Speleothem records older than 500 ka from Southern Siberia. Paper presented at the Proc. 14th International Conference of Speleology, Athens. Buhmann, D., & Dreybrodt, W. (1985a). The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: 1. Open system. Chemical Geology, 48(1-4), 189-211. Buhmann, D., & Dreybrodt, W. (1985b). The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: 2. Closed system. Chemical Geology, 53(1-2), 109-124. Cai, B., Zhu, J., Ban, F., & Tan, M. (2011). Intra‐annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing, China and its implications for palaeoclimatic reconstructions. Boreas, 40(3), 525-535. Cai, Y., An, Z., Cheng, H., Edwards, R. L., Kelly, M. J., Liu, W., Wang, X., & Shen, C. C. (2006). High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology, 34(8), 621-624. Chu, G., Liu, J., Sun, Q., Lu, H., Gu, Z., Wang, W., & Liu, T. (2002). The ‘mediaeval warm period’drought recorded in Lake Huguangyan, tropical South China. The Holocene, 12(5), 511-516. Chu, P. C., Li, H. C., Fan, C., & Chen, Y. H. (2012). Speleothem evidence for temporal–spatial variation in the East Asian Summer Monsoon since the Medieval Warm Period. Journal of Quaternary Science, 27(9), 901-910. Clemens, S. C., Murray, D. W., & Prell, W. L. (1996). Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science, 274(5289), 943. Coplen, T. B., Böhlke, J. K., De Bievre, P., Ding, T., Holden, N. E., Hopple, J. A., Krouse, H. R., Lamberty, A., Peiser, H. S., Revesz, K., Rosman, K. J. R., Roth, E., Taylor, P. D. P., Vocke, Jr. R. D., Xiao, Y. K., & Rieder, S. E. (2002). Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure and Applied Chemistry, 74(10), 1987-2017. Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., & Vuille, M. (2006). Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters, 248(1), 495-507. Dansgaard, W. (1953). The abundance of O18 in atmospheric water and water vapour. Tellus, 5(4), 461-469. Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468. Dorale, J. A., Edwards, R. L., Ito, E., & Gonzalez, L. A. (1998). Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science, 282(5395), 1871-1874. Dorale, J. A., & Liu, Z. (2009). Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies, 71(1), 73-80. Doran, P. T., & Zimmerman, M. K. (2009). Examining the scientific consensus on climate change. Eos, Transactions American Geophysical Union, 90(3), 22-23. Dreybrodt, W. (1999). Chemical kinetics, speleothem growth and climate. Boreas, 28(3), 347-356. Dreybrodt, W. (2008). Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O–CO2–CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochimica et Cosmochimica Acta, 72(19), 4712-4724. Dreybrodt, W., & Scholz, D. (2011). Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochimica et Cosmochimica Acta, 75(3), 734-752. Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., & Revenaugh, J. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1), 71-86. Duan, W., Ruan, J., Luo, W., Li, T., Tian, L., Zeng, G., Zhang, D., Bai, Y., Li, J., Tao, T., Baker, A., Tan, M., & Zhang, P. (2016). The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochimica et Cosmochimica Acta, 183, 250-266. Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81(3), 417-425. Fairchild, I. J., Borsato, A., Tooth, A. F., Frisia, S., Hawkesworth, C. J., Huang, Y., McDermott, F., & Spiro, B. (2000). Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology, 166(3), 255-269. Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75(1), 105-153. Fairchild, I. J., & Treble, P. C. (2009). Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews, 28(5), 449-468. Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., & Matter, A. (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300(5626), 1737-1739. Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B., & Schrag, D. P. (2000). New views of tropical paleoclimates from corals. Quaternary Science Reviews, 19(1), 45-64. Gallet, S., Jahn, B. M., & Torii, M. (1996). Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chemical geology, 133(1), 67-88. Genty, D., & Massault, M. (1997). Bomb 14C recorded in laminated speleothems: calculation of dead carbon proportion. Radiocarbon, 39(1), 33-48. Genty, D., & Massault, M. (1999). Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France—modelling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta, 63(10), 1537-1548. Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., & Van-Exter, S. (2003). Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421(6925), 833. Griffiths, M. L., Fohlmeister, J., Drysdale, R. N., Hua, Q., Johnson, K. R., Hellstrom, J. C., Gagan, M. K., & Zhao, J. X. (2012). Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quaternary Geochronology, 14, 81-93. Griffiths, M. L., Kimbrough, A. K., Gagan, M. K., Drysdale, R. N., Cole, J. E., Johnson, K. R., Zhao, J. X., Cook, B. I., Hellstrom, J. C., & Hantoro, W. S. (2016). Western Pacific hydroclimate linked to global climate variability over the past two millennia. Nature communications, 7, 11719. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566. Hendy, C. H., & Wilson, A. T. (1968). Palaeoclimatic data from speleothems. Nature, 219(5149), 48-51. Hendy, C. H. (1971). The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et cosmochimica Acta, 35(8), 801-824. Hodge, E., McDonald, J., Fischer, M., Redwood, D., Hua, Q., Levchenko, V., Drystale, R., Waring, C., Fink, D. (2011). Using the 14 C bomb pulse to date young speleothems. Radiocarbon, 53(2), 345-357. Holland, H. D., Kirsipu, T. V., Huebner, J. S., & Oxburgh, U. M. (1964). On some aspects of the chemical evolution of cave waters. The Journal of Geology, 72(1), 36-67. Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., & Johnson, K. R. (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters, 266(3), 221-232. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science-AAAS-Weekly Paper Edition, 269(5224), 676-678. Jakubowski, N., Moens, L., & Vanhaecke, F. (1998). Sector field mass spectrometers in ICP-MS. Spectrochimica Acta Part B: Atomic Spectroscopy, 53(13), 1739-1763. Jones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of climatology, 17(13), 1433-1450. Kigoshi, K. (1971). Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science, 173(3991), 47-48. Kutzbach, J. E. (1981). Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. science, 214(4516), 59-61. Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5), 412-432. LaMarche, V. C. (1974). Paleoclimatic inferences from long tree-ring records. Science, 183(4129), 1043-1048. Lechleitner, F. A., Baldini, J. U., Breitenbach, S. F., Fohlmeister, J., McIntyre, C., Goswami, B., Jamieson, A. R., van der Voort, T. S., Prufer, K., Marwan, N., Culleton, B. J., Kennett, D. J., Asmerom, Y., Polyak, V., Eglinton, T. I. (2016). Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite. Geochimica et Cosmochimica Acta, 194, 233-252. Lee, J. E., & Fung, I. (2008). “Amount effect” of water isotopes and quantitative analysis of post‐condensation processes. Hydrological Processes, 22(1), 1-8. LeGrande, A. N., & Schmidt, G. A. (2006). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical research letters, 33(12). Li, H., Gu, D., Ku, T., Stott, L. D., & Chen, W. (1998). Applications of interannual-resolution stable isotope records of speleothem: Climatic changes in Beijing and Tianjin, China during the past 500 years—the δ18O record. Science in China Series D: Earth Sciences, 41(4), 362-368. Li, H.-C., Lee, Z.-H., Wan, N.-J., Shen, C.-C., Li, T.-Y., Yuan, D.-X., & Chen, Y.-H. (2011). The δ18O and δ13C records in an aragonite stalagmite from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate. Journal of Asian Earth Sciences, 40(6), 1121-1130. Li, H. C., Zhao, M., Tsai, C. H., Mii, H. S., Chang, Q., & Wei, K. Y. (2015). The first high-resolution stalagmite record from Taiwan: Climate and environmental changes during the past 1300 years. Journal of Asian Earth Sciences, 114, 574-587. Li, T., & Wang, B. (2005). A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci, 16, 285-314. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). Luo, W., Wang, S., Zeng, G., Zhu, X., & Liu, W. (2014). Daily response of drip water isotopes to precipitation in Liangfeng Cave, Guizhou Province, SW China. Quaternary International, 349, 153-158. Mangini, A., Spötl, C., & Verdes, P. (2005). Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ 18 O stalagmite record. Earth and Planetary Science Letters, 235(3), 741-751. McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(7-8), 901-918. Meyers, P. A., & Lallier-Vergès, E. (1999). Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology, 21(3), 345-372. Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., & Matter, A. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411(6835), 290-293. O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547-5558. Oreskes, N. (2004). The scientific consensus on climate change. Science, 306(5702), 1686-1686. Parker, D. E., Folland, C. K., & Jackson, M. (1995). Marine surface temperature: observed variations and data requirements. Climatic Change, 31(2), 559-600. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PEpin, L., Ritz, C., Saltzman, E., Stievenard, E., & Delmotte, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of climate, 15(13), 1609-1625. Ropelewski, C. F., & Jones, P. D. (1987). An extension of the Tahiti–Darwin southern oscillation index. Monthly Weather Review, 115(9), 2161-2165. Rosholt, J. N., Shields, W. R., & Garner, E. L. (1963). Isotopic fractionation of uranium in sandstone. Science, 139(3551), 224-226. Ruan, J., & Hu, C. (2010). Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China. Chinese Science Bulletin, 55(34), 3929-3935. Sherwin, C. M., & Baldini, J. U. (2011). Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems. Geochimica et Cosmochimica Acta, 75(14), 3915-3929. Sharp, Z. (2017). Principles of stable isotope geochemistry. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Stuiver, M., & Braziunas, T. F. (1989). Atmospheric 14C and century-scale solar oscillations. Nature, 338(6214), 405-408. Tan, M., Baker, A., Genty, D., Smith, C., Esper, J., & Cai, B. (2006). Applications of stalagmite laminae to paleoclimate reconstructions: comparison with dendrochronology/climatology. Quaternary Science Reviews, 25(17), 2103-2117. Tan, L., Cai, Y., Cheng, H., An, Z., & Edwards, R. L. (2009). Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3), 432-439. Tan, L., Cai, Y., An, Z., Edwards, R. L., Cheng, H., Shen, C. C., & Zhang, H. (2011). Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave. The Holocene, 21(2), 287-296. Tan, L., Cai, Y., Cheng, H., Edwards, R. L., Shen, C. C., Gao, Y., & An, Z. (2015). Climate significance of speleothem δ 18 O from central China on decadal timescale. Journal of Asian Earth Sciences, 106, 150-155. Trenberth, K. E., & Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9(6), 303-319. Tuniz, C., Kutschera, W., Fink, D., Herzog, G. F., & Bird, J. R. (1998). Accelerator mass spectrometry: ultrasensitive analysis for global science. CRC press. Wang, B., & Fan, Z. (1999). Choice of South Asian summer monsoon indices. Bulletin of the American Meteorological Society, 80(4), 629-638. Wang, B., Wu, R., & Lau, K. M. (2001). Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. Journal of climate, 14(20), 4073-4090. Wang, B. (2002). Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 15(4), 386-398. Wang, B., Clemens, S. C., & Liu, P. (2003). Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Marine Geology, 201(1), 5-21. Wang, B. (2006). The Asian Monsoon. Chichester, England: Springer Science & Business Media. Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., & Dorale, J. A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 2345-2348. Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M, J., Dykoski, C, A., & Li, X. (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308(5723), 854-857. Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., & An, Z. (2008). Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182), 1090-1093. Wilson, A., Lindholm, D. M., Ware Dewolfe, A., Smith, T., Pankratz, C. K., Snow, M., & Woods, T. N. (2010, December). Evolving LISIRD and the LASP Time Series Server to Support Data Identification, Citation, and Provenance. In AGU Fall Meeting Abstracts. Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., & Liu, J. C. (2007). Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 320-329. Yan, H., Wei, W., Soon, W., An, Z., Zhou, W., Liu, Z., Wang, Y., & Carter, R. M. (2015). Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nature Geoscience, 8(4), 315-320. Yang, Q. N., Zhao, H. Y., Li, H. C., Li, H. K., Bu, Z. J., Wang, S. Z., & Wang, A. X. (2017). Distributions of “bomb 14C”, biogeochemistry and elemental concentration in Hani mire peat profiles, NE China: Implications of environmental change. Quaternary International, 447, 128-143. Yin, J. J., Yuan, D. X., Li, H. C., Cheng, H., Li, T. Y., Edwards, R. L., Lin, Y. S., Qin, J. M., Tang, W., Zhao, Z. Y., & Mii, H. S. (2014). Variation in the Asian monsoon intensity and dry–wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite. Climate of the Past, 10(5), 1803-1816. Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., An, Z., Cai, Y., & Dorale, J. A. (2004). Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304(5670), 575-578. Yumoto, M., & Matsuura, T. (2001). Interdecadal variability of tropical cyclone activity in the western North Pacific. Journal of the Meteorological Society of Japan. Ser. II, 79(1), 23-35. Zeng, Y., Chen, J., Zhu, Z., Li, J., Wang, J., & Wan, G. (2012). The wet Little Ice Age recorded by sediments in Huguangyan Lake, tropical south China. Quaternary International, 263, 55-62. Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., Johnson, K. R., & An, C. (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. science, 322(5903), 940-942. Zhou, Y., Wang, S., Xie, X., Luo, W., & Li, T. (2005). Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China. Chinese Science Bulletin, 50(2), 155-162. Zimmermann, U., Ehhalt, D., & Münnich, K. O. (1968). Soil--water movement and evaporation: Changes in the isotopic composition of the water. Univ., Heidelberg. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69920 | - |
| dc.description.abstract | 東亞夏季風為主導東亞地區氣候的主要因素之一,而古氣候重建有助於我們對於東亞夏季風的理解,能夠更了解其如何影響各地降雨及其控制因素,且可以預測未來的氣候變化。本研究針對三個採自廣西壯族自治區的石筍做分析以重建當地古氣候,JL10和JL12採自金倫洞,YLY12則位於伊嶺岩。金倫洞 (23.553oN,108.265oE) 位於中國廣西省南寧市馬山縣,洞長約9公里;其南方60 km處的伊嶺岩 (23.041oN, 108.297oE) 則是位於南寧市武鳴縣內,洞長約1.1 km,兩者皆在同一氣候帶且有相似地形及植被情況。石筍JL10約有10 cm長,AMS 14C定年結果顯示具有大氣核爆碳十四曲線,透過和大氣核爆曲線的對比及數紋層的結果得出此石筍約有60年的紀錄,生長速率約為1.5 mm / yr。JL12和YLY12分別有35 cm、10 cm長,由於石筍年輕且鈾含量太低,導致鈾系定年結果無法使用,因此以AMS 14C定年,分別為1500年和2000年。雖然JL12和YLY12的14C年齡有死碳的影響,但可用死碳影響最小的年代點來建立年代模式。這三個石筍都有進行碳氧同位素的分析,作為解釋古氣候的指標。JL10年代近且生長快速,可以得到高解析度的氣候指標紀錄,因此能和現代的器測紀錄做比對,發現此研究區域的石筍18O值在夏季降雨量高時變低,迴歸分析及小波相關分析也指出兩者存在顯著的負相關。另外,YLY12的18O紀錄和桂林乾濕指數也有相同的負相關。因此得知,此研究區域的石筍18O值在十年尺度-百年尺度上以雨量效應主導,且EOF結果顯示,廣西地區的夏季降雨雖然受到西北太平洋季風及印度季風影響,但金倫洞和伊嶺岩的石筍最主要還是反映整個廣西地區在東亞季風影響下的降雨變化。在中世紀暖期 (AD 900-1200),石筍18O值低於2000年來的平均值,指示廣西為濕潤時期,小冰期 (AD 1300-1760) 時,18O值比整體平均值高,指示比較乾燥的時期,石筍的高死碳比例同樣說明此時期雨量少。另外,可將小冰期分為兩期,第一期 (AD 1300-1560) 雨量變化劇烈,第二期 (AD 1560-1760) 的降雨則是相對穩定的變化。值得注意的是,廣西的小冰期並非在持續的乾燥氣候狀態,僅於初期、一二期交界、末期處於乾燥時期,其他時段雨量並沒有明顯偏低。此重建結果與附近地區的紀錄相符,本研究的古氣候重建資料有助於建立更詳細的乾濕分佈。 | zh_TW |
| dc.description.abstract | Paleoclimate reconstructions help us to understand the role of the East Asian Summer Monsoon (EASM) on local precipitation and controlling factor of EASM variability, and to improve our climatic prediction. This study presents three stalagmite records, JL10 and JL12 from Jinlun Cave (23.553oN, 108.265oE) and YLY12 from Yilingyan Cave (23.041oN, 108.297oE) which are only 60 km apart in Guangxi, China. AMS 14C dating has been applied to all three stalagmites for chronology construction, and stable oxygen and carbon isotopes analyses for paleoclimate proxies. The 10-cm long stalagmite JL10 shows a “nuclear bomb carbon curve”, which allows comparison with the atmospheric 14C curve to build up the age model. Through the comparison, we obtained the age of JL10 spanning the past 60 years with a growth rate of 1.5 mm / yr, which is confirmed by lamination counting. The 35-cm long stalagmite JL12 from Jinlun Cave and 10-cm long stalagmite YLY12 from Yilingyan Cave reveal 1500-year and 2000-year continuous growth respectively. Although dead carbons influence the 14C dating results, it is a feasible dating method for the stalagmites as 230Th/U dating on both stalagmites was not successful due to low U contents. The 18O record of JL10 has a negative correlation with the summer rainfall confirmed by multiple regression analysis and wavelet coherence, showing so-called “amount effect”. The Empirical Orthoganl Function (EOF) results demonstrate that rainfall variability around Jinlun Cave can represent the rainfall trend in Guangxi. The relatively lower 18O values of the JL12 and YLY12 records during the Medieval Warm Period (MWP, AD900-1200) indicate wetter climate. Higher 18O values, exhibiting dry conditions, only occurred in the beginning, middle and the end of Little Ice Age (LIA) in Guangxi. In the first phase of LIA, from AD1300 to AD1560, the 18O fluctuated drastically, while the 18O was stable in the second phase of LIA (AD1560-AD1760). Furthermore, the dead carbon fraction (DCF) varying throughout the stalagmite JL12 and YLY12 records, ascending during the LIA, descending during the MWP, reflected dry condition during the LIA and a moist climate in the MWP. The paleoclimate of Guangxi reconstructed by the stalagmite records is comparable to other paleoclimatic records in this region, and is favorable for building up a fine dry-wet pattern under the influence of the EASM. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:34:08Z (GMT). No. of bitstreams: 1 ntu-107-R05224204-1.pdf: 20480400 bytes, checksum: 59121abed6ded93a81e6ba4af238962d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV 第一章 緒論 8 1.1 前言 8 1.2 研究目的 8 1.3 石筍的成因 9 1.4 石筍中的碳氧同位素值 11 1.4.1 碳同位素值 11 1.4.2 氧同位素值 14 1.5 研究區域介紹 17 1.5.1 研究區域地質概述 18 1.5.2 研究區域氣候概述 21 1.6 東亞季風與石筍紀錄 23 第二章 實驗材料與方法 25 2.1 材料描述 25 2.2 研究方法 27 2.2.1 14C定年 32 2.2.2 210Pb定年 35 2.2.3 鈾釷定年 35 2.2.4 碳氧同位素值分析 37 2.2.5 微量元素分析 38 第三章 實驗結果 39 3.1 JL10實驗結果 39 3.1.1 AMS 14C定年結果 39 3.1.2 目視數紋層結果 41 3.1.3 碳氧同位素分析結果 42 3.1.4 微量元素分析結果 43 3.2 JL12實驗結果 46 3.2.1 AMS 14C定年結果 46 3.2.2 210Pb定年結果 48 3.2.3 鈾系定年結果 51 3.2.4 碳氧同位素分析結果 53 3.3 YLY12實驗結果 59 3.3.1 AMS 14C定年結果 59 3.3.2 碳氧同位素分析結果 61 第四章 討論 62 4.1 建立年代模式 62 4.1.1 JL10的年代模式 62 4.1.2 JL12的年代模式 65 4.1.3 YLY12的年代模式 66 4.2 微量元素變化 67 4.3 石筍18O變化的氣候意義 68 4.4 廣西降雨變化 78 4.5 廣西的古氣候重建 86 4.6 石筍紀錄比對 92 第五章 結論 96 參考文獻 97 附錄一 JL10的AMS 14C定年結果 107 附錄二 JL12的AMS 14C定年結果 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | AMS 14C定年 | zh_TW |
| dc.subject | 石筍 | zh_TW |
| dc.subject | 古氣候 | zh_TW |
| dc.subject | 氧同位素 | zh_TW |
| dc.subject | 碳同位素 | zh_TW |
| dc.subject | stalagmite | en |
| dc.subject | AMS 14C dating | en |
| dc.subject | 18O | en |
| dc.subject | 13C | en |
| dc.subject | paleoclimate | en |
| dc.title | 以石筍與現代器測紀錄重建廣西2000年來的氣候變化 | zh_TW |
| dc.title | Reconstruction of paleoclimate during the past 2000 years in Guangxi based on stalagmite and instrumental records | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 米泓生,陳惠芬 | |
| dc.subject.keyword | 石筍,古氣候,氧同位素,碳同位素,AMS 14C定年, | zh_TW |
| dc.subject.keyword | stalagmite,paleoclimate,18O,13C,AMS 14C dating, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201800507 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 20 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
