Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李紅春(Hong Chun Li)
dc.contributor.authorYi-Wei Changen
dc.contributor.author張益瑋zh_TW
dc.date.accessioned2021-06-17T03:34:05Z-
dc.date.available2019-03-01
dc.date.copyright2018-03-01
dc.date.issued2018
dc.date.submitted2018-02-12
dc.identifier.citation英文參考文獻
A. Schimmelmann, C. B. Lange, and H. C. Li, Major Flood Events of the Past 2,000 Years Recorded in Santa Barbara Basin Sediment. 2001 Paclim Conference Proceedings, pp. 82-103, 2016.
A. Schimmelmann, C.B. Lange, Extreme climatic conditions recorded in Santa Barbara Basin laminated sediments: the 1835-1840 Macoma Event. Marine Geology, pp. 279-299, 1992.
A. Schimmelmann, M. J. Tegner, Historical oceanographic events reflected in 13C/12C retio of total organic carbon in laminated santa barbara basin sediment. Global biogeochemical cycles, vol. 5, pp. 173-188, 1991.
A. Tomašových, Stratigraphic unmixing reveals repeated hypoxia events over the past 500 yr in the northern Adriatic Sea. Geology, Vol. 45, pp. 363–366, 2017.
A. M. Shiller, J. M. Giesres, Particulate iron and manganese in the Santa Barbara Basin, California. Geochimica et Cosmochimica Acta, pp. 1239-1249, 1985.
A. L. Magana, J. R. South, Resolving the cause of large differences between deglacial benthic foraminifera radiocarbon measurements in Santa Barbara Basin. Paleoceanography, vol. 25, 2010.
B.L. Ingram, J.P. Kennett, Radiocarbon chronology and planktonic-benthic foraminiferal 14C age differences in Santa Barbara Basin sediments, Hole 893A. Proceedings of the Ocean Drilling Program, Scientific Results, pp. 19-27, 1995.
B. M. Hickey, Circulation over the Santa Monica-San Pedro Basin and Shelf. Progress in Oceanography, vol. 30, pp. 37-115, 1992.
C. L. Sabine, R. A. Feely, The Oceanic Sink for Anthropogenic CO2. Science, vol. 305, 2004.
C. L. Blanchet, N. Thouveny, and L. Vidal, Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography, vol. 24, pp. 224, 2009.
D. C. Lund, Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation. Nature Geoscience, vol. 4, pp. 771-774, 2011.
D. S. Gorsline, Depositional events in Santa Monica Basin, California Borderland, over the past five centuries. Sedimentary Geology 104, pp. 73-88, 1996.
D. R. Browne, Understanding the oceanic circulation in and around the Santa Barbara Channel. The Fourth California Islands Symposium: Update and the Status of Resources, pp. 27-34, 1994.
D. J. Kennett, J. P. Kennett, Competitive and Cooperative Responses to Climatic Instability in Coastal Southern California. American Antiquity, pp. 379-395, 2000.
D. J. Kennett, B. L. Ingram, J. M. Erlandson, and P. Walker, Evidence for Temporal Fluctuations in Marine Radiocarbon Reservoir Ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science, pp.1051–1059, 1997.
F. J. Millero, The Marine Inorganic Carbon Cycle. Chem. Rev., vol. 107, pp. 308-341, 2007.
I. L. Hendy and J. P. Kennett, Dansgaard-Oeschger cycles and the California Current System:Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography, vol. 15, pp. 30-42, 2000.
I. L. Hendy, T. J. Napier, From extreme rainfall to drought: 250 years of annually resolved sediment deposition in Santa Barbara Basin, California. Quaternary International, pp. 3-12, 2015.
J. A. Barron, D. Bukry, Santa Barbara Basin diatom and silicoflagellate response to global climate anomalies during the past 2200 years. Quaternary International, pp. 34-44, 2010.
J.S. Vogel, J.R. Southon, D.E. Nelson and T.A. Brown, Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research, pp.289-293, 1984.
J. –C. Duplessy, M. Arnold, E. Bard, A. Juillet-Leclerc, N. Kallel
and L. Labeyrie, AMS 14C study of transient events and of the ventilation rate of the pacific intermediate water during the last deglaciation. Radiocarbon, vol 31, pp. 493-502, 1989.
J. S. Hornafius, The world's most spectacular marine hydrocarbon seeps
(Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. Journal of geophysical research, pp. 20,703-720, 1999.
J. P. Kennett, B. L. Ingram, A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature, vol. 377, pp. 510-514, 1995.
J. Hülsemann, K. O. Emery, Stratification in recent sediments of santa barbara basin as controlled by organisms and water character. The Journal of Geology, vol. 69, pp. 279-290, 1961.
K. G. Cannariato, J. P. Kennett, R. J. Behl, Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: Ecological and evolutionary implications. Geology, Vol. 27, pp. 63-66, 1999.
M. Ziegler, T. Jilbert, G. J. de Lange, L. J. Lourens, and G.-J. Reichart, Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Technical Brief, Vol. 9, pp. 1-6, 2008.
M. O. Stallard, S. E. Apitz and C. A. Dooley, X-Ray Fluorescence Spectrometry for Field Analysis of Metals in Marine Sediments,” Marine Pollution Bulletin, Vol. 31, Nos 4-12, pp. 297-305, 1995.
M. Yoneda, H. Uno, Y. Shibata, Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research, pp.432-437, 2007.
M. Stuiver, G. W. Pearson, T. Braziunas, Radiocarbon age calibration of marine samples back to 9000 cal yr bp. Radiocarbon, vol. 28, pp 980-1021, 1986.
M. Schaaf, J. Thurow, X Tracing short cycles in long records: the study of inter-annual to inter-centennial climate change from long sediment records, examples from the Santa Barbara Basin. Journal of the Geological Society, Vol. 154, pp. 613–622, 1997.
M. Koide, A. Soutar, E. D. Goldberg, Marine geochronology with 210Pb. Earth and Planetary Science Letters, vol. 14, pp. 442-446, 1972.
N. Maher, T. Naehr, H.G. Greene and P. Eichhubl, Structural control of fluid flow: offshore fluid seepage in the Santa Barbara Basin, California. Journal of Geochemical Exploration, pp. 545-549, 2000.
N. G. Pisias, Paleoceanography of the Santa Barbara Basin during the Last 8000 Years. Quaternary research 10, pp. 366-384, 1978.
R. G. Rothwell and I. W. Croudace, Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us. Springer Science & Business Media Dordrecht, 2015.
R. D. Pol-Holz, L. Keigwin, No signature of abyssal carbon in intermediate
waters off Chile during deglaciation. Nature Geoscience, Vol. 3, pp. 192-195, 2010.
R. C. Thunell, E. Tappa, D. M. Anderson, Sediment fluxes and varve formation in Santa Barbara Basin, offshore California. Geology, Vol. 23, pp. 1083–1086, 1995.
R. D. Pol-Holz, L. Keigwin, No signature of abyssal carbon in intermediate
waters off Chile during deglaciation. Nature geoscience, vol. 3, pp. 192-195, 2010.
S. M. Colman, P. C. Baucom, and J. F. Bratton, Radiocarbon Dating, Chronologic Framework, and Changes in Accumulation Rates of Holocene Estuarine Sediments from Chesapeake Bay. Quaternary Research, pp.58–70, 2002.
S. Andrew, A. C. Peter, Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 20th centuries. Geological Society of America Bulletin, pp. 1161-1172, 1977.
S. C. Brassell, P. E. Sauer, A. Schimmelmann, Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in laminated Santa Barbara Basin sediments. Organic Geochemistry, pp. 303-314, 2017.
T. -H. Pencand, W. S. Broecker, Rates of Benthic Mixing in Deep-Sea Sediment as Determined by Radioactive Tracers. Quaternary research, pp.141-149, 1979.
T. M. Marchitto, S. J. Lehman, Marine Radiocarbon Evidence for the Mechanism of Deglacial Atmospheric CO2 Rise. Science, pp. 1456-1459, 2007.
T. O. Richter, S. V. D. Gaast, The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. The Geological Society of London, pp. 39-50, 2006.
U. Siegenthaler, J. L. Sarmiento, Atmospheric carbon dioxide and the ocean. Nature, vol. 365, 1993.
W. L. Miller and R. G. Zepp, Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle. Geophysical research letters, vol. 22, NO. 4, pp. 417-420, 1995.
X. Xu, S. E. Trumbore, S. Zheng, J. R. Southon, K. E. McDuffee, M. Luttgen, J. C. Liu, Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research, pp.320-329, 2007.
Y. Nozaki, J. K. Cochran, K. K. Tuerkian and G. Keller, Radiocarbon and 210Pb distribution in submersible-taken deep-sea core from project FAMOUS. Earth and Planetary Science Letters, vol. 34, pp. 167-173, 1977.
中文參考文獻
M. D. Dettinger, B. L. Ingram, 大氣長河漫加州。科學人, pp. 82-89, 2013.
黃致展,2011。蘭陽溪流域系統千年來自然災變與淇武蘭文化空白之關聯。國立台灣大學地質科學系研究所碩士論文。共81頁。
網站參考文獻
Earthquake Track網站, Recent Earthquakes Near Santa Barbara, California, United States. https://earthquaketrack.com/us-ca-santa-barbara/recent.
美國國家海洋暨大氣總署(NOAA)網站, 大氣長河. https://www.esrl.noaa.gov/psd/atmrivers
中央氣象局,過去的ENSO紀錄.
http://www.cwb.gov.tw/V7/climate/climate_info/other-subject/other-subject_1_3.html.
維基百科, 聖嬰現象.
https://zh.wikipedia.org/wiki/%E8%81%96%E5%AC%B0%E7%8F%BE%E8%B1%A1.
維基百科, 反聖嬰現象.
https://zh.wikipedia.org/wiki/%E6%8B%89%E5%B0%BC%E5%A8%9C%E7%8E%B0%E8%B1%A1.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69919-
dc.description.abstract本研究以取自美國加州聖塔芭芭拉海盆長51公分的重力岩心SBB-8-2012(34o 17'N, 120o 03'W,深度約580米)作為地球化學研究的材料,研究沉積物中有機碳14C活度變化和元素含量變化的原因,對該海盆的有機碳和沉積物來源以及水團混合進行討論,從而了解自然和人類對研究地區的影響。岩芯的年代利用三種定年手法:紋層計數、210Pb定年、14C定年。透過210Pb結果給出岩芯的沉積速率為0.25~0.29 cm/year,求得此岩芯底部年代為西元1815年,與紋層計數年齡相當。但是,沉積物總有機碳14C的定年結果在500~4600 yr BP之間,顯示受到海洋碳庫中老碳的影響,因此不能為定年依據。岩心中有機碳含量高(X-ray通光較強的層位)陸源物質輸入少(Si, K, Ti低),14CTOC年齡受老碳污染小,較年輕。海盆內碳庫老碳來源受控於陸源沉積物的輸入,海洋環流的變化、生物作用以及海盆內老碳再礦化,這些因素受到海盆沉積環境變化影響,使得沉積物中的有機碳年代改變,造成14CTOC定年的波動。
海盆沉積環境變化影響除了影響14CTOC年齡的波動,在Itrax XRF core Scanner全岩相與ICP-OES稀酸可溶相元素分析結果也呈現高低變化。結合Δ14CTOC與化學元素的變化,岩芯沉積階段大致分為三個時期:
(I) 1870~1815年: 沉積紋層不太明顯,XRF分析元素Ca/Ti和Fe/Mn比值都不高,但Si, K和Ti含量較高,顯示為陸源輸入主要的沉積物。稀酸可溶相中Ca、Sr海相元素濃度較高,其他陸相元素濃度則較低,表明在海洋自生礦物相和吸附相由河水輸入帶來的陸相元素較少。岩芯沉積物中有機碳14C年齡偏老是因為陸源輸入的POC帶入老碳;陸源輸入的DOC被氧化混入海水DIC而帶入老碳;海盆古老沉積物中的有機碳被還原成CH4釋放到孔隙水和海水中,再被氧化為CO2與海水中的DIC混合,而海水中生成的有機碳利用DIC,使得新沉積的有機碳14C年齡偏老。在這部分,老碳的影響造成沉積物有機碳14C年齡比真實的沉積年齡偏老大約1500~2500年。而在某些時期由於老碳輸入增加,造成初始14CTOC年齡偏老可達4500年。
(II)1950~1870年,XRF結果顯示Fe/Mn和Ca/Ti比值都增加,沉積物仍以陸源沉積物輸入為主,但Si, K和Ti的含量減低,顯示陸源輸入減少。沉積物中顯示有一些鈣質殼類形成,鐵質氧化物增加(Fe含量增加),富含有機質的紋層增加,顯示這段時間海洋生產力增加,氧化條件增加,還原條件減低,但在稀酸可溶相元素中各元素含量卻相對減少,表明由於取樣方法的差異,使相同元素在不同分析方法呈現不同的變化。陸源輸入減少反映在稀酸可溶相元素濃度上,推測0.5NHCl所溶出之陸源礦物相對較多。在此一時期,Δ14CTOC波動幅度從下至上逐漸減小,老碳的影響逐漸降低,除底部一個年齡超過2000年,所有年齡都小於2000年,上部年齡都在1000年以內。
(III) 2012~1950年,沉積紋層明顯,XRF分析元素Si、K、Ti含量增加,變幅增大,Ca減少,Fe/Mn比值較低,顯示為還原環境增強。沉積物中的稀酸可溶相元素在不同紋層中變化很大,元素變化與X光照片穿透程度變化相關。在X光穿透程度較高的地方,全岩相及稀酸可溶相元素含量都相對較低,且對比年代推測受聖嬰及反聖嬰現象影響。反聖嬰時期,稀酸可溶相元素含量降低,聖嬰時期增高。岩心沉積物有機碳14C年齡在這個時段最小年齡變小,這是因為1950年之後的核爆使得海水中DIC的14C活度升高,造成老碳對初始年齡的影響較小。同時,海盆的還原條件增強,使得CH4不易被氧化,老碳影響減弱。Δ14CTOC波動也同元素含量波動一樣呈現類似聖嬰及反聖嬰影響的現象。
zh_TW
dc.description.abstractA 51-cm gravity core, SBB-8-2012, was collected from 580 m water depth in Santa Barbara Basin (SBB) of California (34o 17'N, 120o 03'W) in 2012. We use lamination counting by Itrax XRF core scanner, alpha spectrometer 210Pb dating and AMS 14C dating to establish the chronology of this core. The 14C age of the core materials cannot represent the true depositional ages because of marine reservoir age effect. The 210Pb dating results yield a linear sedimentation rate of 0.29 cm/year for the top 15-cm and a linear sedimentation rate of 0.25 cm/year below 15-cm of the core, which are similar to the lamination counting. The core age is from AD 2012 on the top to AD 1815 at the bottom spanning 197 years’ sedimentary history.
SBB marine reservoir age for the past 200 years is controlled by variations of the old carbon sources into the sediments and the 14C activity of the atmospheric CO2. The old carbon sources in SBB are the input of terrigenous sediments, the changes of ocean circulation, the biological input and the old carbon remineralization. These factors are affected by the changes of the sedimentary environment in the basin, and resulting in 14CTOC fluctuations.
The element analyses by Itrax XRF core scanner and ICP-OES can reflect changes of sedimentary environment in the basin. The XRF results show elemental contents in the bulk sediments. The elemental concentrations of the acid-leachable fractions (ALE) measured by an ICP-OES represent elements mainly in the authigenic phases. Combining changes in the Δ14CTOC and the elemental contents in the core, the depositional history in SBB can be divided into three periods during the past ~200 years:
(I) From 1870 to 1815 (37-51 cm depth): Lamination is not very identical. XRF scan shows high Si, K and Ti contents, but low Ca/Ti and Fe/Mn ratios, indicating mainly terrestrial sedimentary input. The ALE Ca and Sr concentrations were high but the other elements were low, reflecting fewer terrestrial elements in the marine authigenic mineral and adsorbed facies. The 14CTOC ages are much older than the depositional age due to old carbon influence. The old carbon comes from the POC and DOC input from terrestrial sources and remineralization of CH4 which is reduced from the old marine sediments in deeper layers. Part of the old carbons are oxidized to CO2 and mixed with DIC in seawater, elevating the reservoir age. The organic carbon generated in seawater utilizes the DIC, making the 14CTOC age older. The remaining terrestrial POC into the marine sediments will make the 14CTOC age even >2000-yr older than the depositional age.
(II) From 1950 to 1870 (17-37 cm depth): Comparing with other periods, the terrigenous input become lower, and the concentration of ALE also decrease. During this period, the Δ14CTOC fluctuation became more negative, because of more oxidized environment, increasing oxygen into the sediments on the subsurface. Microorganism in the sediments promote the increase of remineralization of POC. The results of XRF show that the ratios of Fe/Mn and Ca/Ti all increase, and the contents of Si, K and Ti decrease, which shows that the terrestrial input decreases even though the sediments are still dominated by terrigenous sediments. Some calcareous shell formation, increased iron oxides and organic-rich lamina may indicate an increase in marine productivity during this time. The ALE contents decreased, indicating the reduction of river input. During this period, the 14CTOC became younger rapidly upward due to decreased old carbon influence. Increased vertical mixing of water column may be the main reason for enhancement of productivity and oxidation condition in SBB.
(III) From 2012 to 1950 (0-17 cm depth): The lamination is obvious. Low Ca and the Fe/Mn ratio show enhanced reduction environment. The 14CTOC ages during this period have less reservoir age due to the input of nuclear bomb carbon. The lamination, XRF measured elements and ALEs as well as Δ14CTOC vary correspondingly probably to El Niño-Southern Oscillation (ENSO) effect. During the La Niña period, stronger upwelling and northerly current bring nutrient enriched water into SBB and lead to higher productivity. The organic and carbonate enriched sediments containing lower ALEs and lower XRF measured elements with higher Δ14CTOC form the light layer during La Niña period. During the El Nino period, the phenomena are opposite.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:34:05Z (GMT). No. of bitstreams: 1
ntu-107-R04224114-1.pdf: 10939231 bytes, checksum: 30954d162ff0e24e22397f9d30cb83ae (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 V
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的與內容 2
第二章 文獻回顧 4
2.1聖塔芭芭拉地區環境變化史 4
2.1.1聖塔芭芭拉海盆沉積物 4
2.1.2 地震洪水事件 5
2.1.3 海洋岩芯紀錄 7
2.2海洋岩芯定年手法 9
2.2.1 210Pb定年 10
2.2.2 14C定年 11
2.2.3 14C定年素材選擇 13
2.3海洋碳庫(Marine Reservoir) 13
2.3.1聖塔芭芭拉地區14C來源及碳庫成因 15
2.3.2聖塔芭芭拉地區洋流系統 17
2.4 Itrax XRF岩芯掃描分析 19
2.5 稀酸可溶相元素 20
第三章 研究材料及方法 21
3.1 SBB-8-2012 Core 21
3.1.1簡介 21
3.1.2材料選取 23
3.2 實驗流程 23
3.3 岩心掃描與X光螢光分析法(X-ray Fluorescence) 24
3.4 取樣及沉積物樣品化學前處理 25
3.5 210Pb定年方法與流程 28
3.5.1原理 28
3.5.2 儀器介紹 29
3.5.3 實驗方法及流程 29
3.6 14C定年方法與流程 30
3.6.1 原理 30
3.6.2 儀器介紹 31
3.6.3 實驗方法及流程 31
3.7 稀酸可溶相元素分析 35
3.8其他方法及儀器 36
3.8.1烘箱及冷凍乾燥機 36
3.8.2石墨合成系統 36
3.8.3高溫爐 37
第四章 結果與討論 38
4.1 SBB-8-2012定年結果 38
4.1.1 紋層計數與210Pb定年結果 38
4.1.2 14C定年結果 43
4.1.3 岩芯SBB-8-2012年代重建 61
4.2 碳十四定年年代偏老及波動討論 65
4.3 岩芯SBB-8-2012元素分析結果討論 73
4.3.1 Itrax XRF core scanner 元素分析結果 73
4.3.2 ICP-OES元素分析結果 79
4.3.3 全岩相掃描與稀酸可溶相比較 93
4.4 Δ14CTOC波動結果對比元素分析結果討論 93
第五章 結論 97
參考文獻 100
附錄 106
dc.language.isozh-TW
dc.title美國加州聖塔芭芭拉地區海洋岩芯之地球化學研究zh_TW
dc.titleGeochemistry study on a sediment core from Santa Barbara Basin, California, USAen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄,陳惠芬
dc.subject.keyword聖塔芭芭拉海盆,AMS 14C dating,210Pb dating,Itrax XRF core Scanner,ICP-OES稀酸可溶相元素分析,海洋碳庫效應,zh_TW
dc.subject.keywordSanta Barbara basin,AMS 14C dating,210Pb dating,Itrax XRF core scanner,Acid-leachable elements,Marine reservoir effect,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201800528
dc.rights.note有償授權
dc.date.accepted2018-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved