請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Michael Lee | en |
| dc.contributor.author | 李林翰 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:34:02Z | - |
| dc.date.available | 2023-03-02 | |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-12 | |
| dc.identifier.citation | Barber, M. A. (1911). A technic for the inoculation of bacteria and other substances into living cells. The Journal of Infectious Diseases, 348-360.
Cartier, R., Ren, S. V., Walther, W., Stein, U., Lewis, A., Schlag, P. M., . . . Furth, P. A. (2000). In vivo gene transfer by low-volume jet injection. Analytical biochemistry, 282(2), 262-265. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., . . . Danielsen, M. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 84(21), 7413-7417. Friedmann, T., & Roblin, R. (1972). Gene therapy for human genetic disease? Science, 175(4025), 949-955. Furth, P. A., SHAMAY, A., & HENNIGHAUSEN, L. (1995). Gene transfer into mammalian cells by jet injection. Hybridoma, 14(2), 149-152. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation research, 100(9), 1249-1260. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., & Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences, 77(12), 7380-7384. Guo, Y., Xiao, P., Lei, S., Deng, F., Xiao, G. G., Liu, Y., . . . Chen, Y. (2008). How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta biochimica et biophysica Sinica, 40(5), 426-436. Hingson, R. A., & Hughes, J. G. (1947). Clinical Studies with Jet Injection.*: A New Method of Drug Administration. Anesthesia & Analgesia, 26(6), 221-230. Huang, S.-K. (2016). Target Cell Electroporation in Microfluidic Device. 臺灣大學生物產業機電工程學研究所學位論文, 1-74. Ismach, A. (1962). Multi-dose jet injection device: Google Patents. Jasinskiene, N., Juhn, J., & James, A. (2007). Microinjection of A. aegypti embryos to obtain transgenic mosquitoes. Journal of visualized experiments: JoVE(5). Karra, D., & Dahm, R. (2010). Transfection techniques for neuronal cells. Journal of Neuroscience, 30(18), 6171-6177. Lehrman, S. (1999). Virus treatment questioned after gene therapy death: Nature Publishing Group. Li, Y.-Q., Zeng, A., Han, X.-S., Wang, C., Li, G., Zhang, Z.-C., . . . Jing, Q. (2012). Argonaute-2 regulates the proliferation of adult stem cells in planarian. Cell research, 22(1), 275. Li, Y.-X., Farrell, M., Liu, R., Mohanty, N., & Kirby, M. (2000). Double-stranded RNA injection produces null phenotypes in zebrafish. Developmental biology, 217(2), 394-405. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. Marshall, E. (1999). Gene therapy death prompts review of adenovirus vector. Science, 286(5448), 2244-2245. Mason, C., & Manzotti, E. (2010). Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010. Regenerative medicine, 5(3), 307-313. Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced biomedical research, 1. Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO journal, 1(7), 841. Pedersen, K. J. (1959). Cytological studies on the planarian neoblast. Cell and Tissue Research, 50(6), 799-817. Reddien, P. W., & Alvarado, A. S. (2004). Fundamentals of planarian regeneration. Annu. Rev. Cell Dev. Biol., 20, 725-757. Rees, C. E. (1937). Penetration of tissue by fuel oil under high pressure from diesel engine. Journal of the American Medical Association, 109(11), 866-867. Ren, S. V., Li, M., Smith, J. M., DeTolla, L. J., & Furth, P. A. (2002). Low-volume jet injection for intradermal immunization in rabbits. BMC biotechnology, 2(1), 10. Rossi, L., Salvetti, A., Lena, A., Batistoni, R., Deri, P., Pugliesi, C., . . . Gremigni, V. (2006). DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Development genes and evolution, 216(6), 335. Rouhana, L., Shibata, N., Nishimura, O., & Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Developmental biology, 341(2), 429-443. Rouhana, L., Weiss, J. A., Forsthoefel, D. J., Lee, H., King, R. S., Inoue, T., . . . Newmark, P. A. (2013). RNA interference by feeding in vitro–synthesized double‐stranded RNA to planarians: Methodology and dynamics. Developmental Dynamics, 242(6), 718-730. Schramm-Baxter, J., & Mitragotri, S. (2004). Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. Journal of Controlled Release, 97(3), 527-535. Stolberg, S. G. (1999). The biotech death of Jesse Gelsinger. NY Times Mag, 28, 136-140. SutterInstrumentCo. (2016). <P-97 Flaming/Brown Micropipette Puller Operation Manual.pdf>. Vogel, C., & Marcotte, E. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. Walther, W., Stein, U., Fichtner, I., Malcherek, L., Lemm, M., & Schlag, P. M. (2001). Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene therapy, 8(3), 173. Walther, W., Stein, U., Fichtner, I., Voss, C., Schmidt, T., Schleef, M., . . . Schlag, P. M. (2002). Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Molecular biotechnology, 21(2), 105-115. Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., . . . Artim-Moore, L. (2001). Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant cell reports, 20(5), 429-436. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69918 | - |
| dc.description.abstract | 本論文介紹一使用簡單材料製作之渦蟲基因遞送的微量注射系統。該系統包含了:(1)減少渦蟲運動的溫度控制平台以及(2)基因遞送微量注射器。
該系統中的溫度控制平台使用電阻測溫體量測平台溫度並配合微控制器和致冷晶片進行回饋控制以達到控制溫度的效果。採用不同的控制方法可以使平台達到較為快速、準確的溫度控制。基因遞送微量注射器則是使用電動缸(electric cylinder)為致動器並配合經熱熔拉伸成形的玻璃針來進行注射。連續注射實驗檢驗了注射器的穩定性。從嘗試拉針的結果得知在拉針的時候,(1)調整玻璃毛細管的溫度、(2)限制毛細管拉開的速度以及(3)施加不同大小的拉力,可以製作出不同外型和孔徑的玻璃針。 螢光微珠以及雙股核糖核酸注射實驗結果證實了本系統對於渦蟲基因遞送的適用性。利用本系統將DjAgo2雙股核糖核酸遞送進渦蟲身體裡將使渦蟲DjAgo2表現量下降並使渦蟲的再生功能缺失,此實驗成功的証明了本系統可用作餵食法的替代方案,除了能有效控制遺傳物質的注射量,還能用於研究需要飢餓條件之基因功能。 | zh_TW |
| dc.description.abstract | The thesis presents a microinjection system for gene delivery to planarian with simple materials. The system consists of two parts: a planarian-fixing platform and a nanoliter injector (nano-scale microinjector). The platform controls the temperature with the use of a microcontroller, a thermoelectric cooler, and a resistance thermometer. The microinjector is built with an electric cylinder and the glass needles are produced by pulling glass capillaries.
The platform becomes more stable and accurate with better control methods. The processes and principles of pulling a needle with a micropipette puller are discussed: needles with desired shapes and orifice sizes can be produced with the puller by adjusting the temperature of a capillary, limiting the velocity of the capillary when it is being pulled and exerting a force to pull the capillary apart. The stability of the injector is confirmed by continuously injecting in the minimum volume. The adaptability of the system to planarian is validated by performing injections of fluorescent microbeads and dsRNA into planarian successfully. Delivery of DjAgo2 dsRNA leads to a reduction of DjAgo2 expression, which results in a degenerated phenotype of planarian. This validates our system as an alternative to ingestion, which performs delivery by feeding planarian genetic substances mixed food. Our system is applicable to studying the function of genes related to starvation condition. Besides, the dosage of genetic substances is consistent, which is required for the following analyses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:34:02Z (GMT). No. of bitstreams: 1 ntu-107-R04631020-1.pdf: 3740119 bytes, checksum: 7da95ccf8f7afa4df96e2096427bfc3d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Regenerative Medicine and Planarian 1 1.2 Thesis Structure 3 Chapter 2 Literature Review 4 2.1 Gene Delivery 4 2.1.1 Viral Gene Delivery 4 2.1.2 Non-viral Gene Delivery 5 2.1.2.1 Liposome Transfection 5 2.1.2.2 Gene Gun / Particle Bombardment 5 2.1.2.3 Electroporation 6 2.1.2.4 Microinjection 6 2.1.2.5 Jet Injection 6 2.2 DjAgo2 and RNAi in Planarian 8 Chapter 3 Materials and Methods 10 3.1 Planarians 10 3.2 Temperature-Controlled Platform 11 3.2.1 PID Controller 12 3.3 Microinjection 15 3.3.1 Needles 15 3.3.2 Injector 19 3.3.3 Injection Volume 20 3.4 Performance Evaluation of Microinjections 21 3.4.1 Fluorescent Microbeads Injection 21 3.4.2 DjAgo2 dsRNA Injection 23 3.4.2.1. Preparation and Injection 23 3.4.2.2. Expression Analysis 25 Chapter 4 Results and Discussion 29 4.1 Temperature-Controlled Platform 29 4.1.1 PID Controller 29 4.1.2 Platform Testing 33 4.2 Microinjection 34 4.2.1 Needles 34 4.2.2 Injection Volume 39 4.3 Injections 40 4.3.1 Fluorescent Microbeads Injection 40 4.3.2 DjAgo2 dsRNA Injection 42 Chapter 5 Conclusions and Perspectives 48 5.1 Conclusions 48 5.2 Perspectives 49 Appendix I 50 Appendix II 51 Appendix III 53 Appendix IV 55 References 56 Q&A 59 | |
| dc.language.iso | en | |
| dc.subject | 再生 | zh_TW |
| dc.subject | 渦蟲 | zh_TW |
| dc.subject | 顯微注射 | zh_TW |
| dc.subject | 基因遞送 | zh_TW |
| dc.subject | regeneration | en |
| dc.subject | gene delivery | en |
| dc.subject | microinjection | en |
| dc.subject | planarian | en |
| dc.title | 渦蟲基因遞送顯微注射器暨輔助之控溫平台研發 | zh_TW |
| dc.title | Microinjector and Temperature-Controlled Platform for Gene Delivery to Planarian | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱家瑩(Chia-Ying Chu),鄭宗記(Tzong-Jih Cheng),黃振康(Chen-Kang Huang) | |
| dc.subject.keyword | 基因遞送,顯微注射,渦蟲,再生, | zh_TW |
| dc.subject.keyword | gene delivery,microinjection,planarian,regeneration, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201800049 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
