請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69888
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陶秘華(Mi-Hua Tao) | |
dc.contributor.author | THOMAS CHITAO SHIH | en |
dc.contributor.author | 施季韜 | zh_TW |
dc.date.accessioned | 2021-06-17T03:32:33Z | - |
dc.date.available | 2021-03-29 | |
dc.date.copyright | 2018-03-29 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-14 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69888 | - |
dc.description.abstract | 部分腫瘤已可由癌症免疫治療治癒,然而並非對所有病人都有療效。文獻證實癌症免疫治療的療效與腫瘤突變數量、腫瘤浸潤的T淋巴細胞相關,而胺基酸突變所形成之腫瘤新生抗原是其理想治療標的。我們先前證實放射線結合IL-12和GM-CSF之局部免疫治療的合併療法能治癒數個小鼠腫瘤模型,且治療引發腫瘤內浸潤CD8+ T細胞數量與活性顯著上升。因此,我們推論合併療法的療效是藉由引發腫瘤新生抗原特異T細胞辨識腫瘤新生抗原所造成。由於文獻曾報告B16F10黑色素瘤之突變,我們挑選其中21個活體試驗中能引發免疫反應突變分析,藉由定序確認了我們的B16F10細胞株具備其中16個突變。接著以程式預測21個突變的免疫性,以Immune Epitope Database and Analysis Resources (IDEB) 和 Bioinformatics and Molecular Analysis Section (BIMAS)工具,預測出其中20個對C57BL/6J 小鼠的major histocompatibility complex (MHC) Class I分子有高結合力。同時我們建立B16F10皮下腫瘤實驗動物模型,單以放射線或免疫治療皆無明顯療效,而合併療法能抑制腫瘤生長,並增加腫瘤浸潤CD8+ T細胞數量、引流淋巴結CD4+ T、CD8+ T細胞活性。我們初步以IFN ELISPOT assay證實了合併療法引發脾臟細胞的腫瘤新生抗原特異T細胞反應。未來需要進一步探討腫瘤新生抗原特異T細胞數量與活性和腫瘤復發時之關係,並以所預測的腫瘤新生抗原,製成疫苗,加強特異T細胞活性,以預防復發,並提供長期保護。 | zh_TW |
dc.description.abstract | Immunotherapies have led to promising clinical outcomes in certain cancer patients; however, not all patients benefited from immunotherapies. Evidence suggests that the therapeutic efficacy of cancer immunotherapy correlates with tumor mutation burden and the number of tumor-infiltrating T cells. Neoantigens, which are tumor specific nonsynonymous mutations with amino acid substitutions in expressed proteins, have recently been reported as ideal targets for effective cancer immunotherapy. Our previous study has shown that a combination therapy of ionizing radiation and local immunotherapy, achieved by intratumoral injection of adenoviral vectors encoding interleukin 12 and granulocyte-marcophage colony stimulating factor (Ad/IL-12 + GM-CSF), resulted in regression of large established tumors of several murine tumor models. Mechanistic studies revealed that the number of tumor-infiltrating CD8+ T cells was significantly increased. We hypothesized that these tumor-infiltrating CD8+ T cells generated by the combination therapy are neoantigens-specific and correlated with the therapeutic efficacy. We chose B16F10, a highly malignant murine melanoma, as the tumor model to investigate this hypothesis because the neoantigen information of this tumor cell line is available in the public database. Among the many mutations reported in B16F10 tumor cells, we chose 21 of them as the potential neoantigens due to their mutated peptides can induce T cell responses in vivo. To confirm whether these reported mutations are also present in our B16F10 cell line, we synthesized their corresponding primers and carried out PCR for sequencing analysis. Our results confirmed 16 mutations in our cell line but the other 5 remained as wild type sequences. Using the T cell epitope analysis tools provided by Immune Epitope Database and Analysis Resources (IDEB) and Bioinformatics and Molecular Analysis Section (BIMAS), we confirmed that peptides containing 20 of the 21 mutations had a high binding affinity to the major histocompatibility complex (MHC) Class I molecules of C57BL/6J mice. We demonstrated that combination therapy of radiation and Ad/IL-12 + GM-CSF significantly suppressed tumor growth, while the single therapy of radiation or Ad/IL-12 + GM-CSF had much less effect. In addition, the combination therapy resulted in a significant increase of tumor-infiltrating CD8+ T cells. In the combination therapy group, CD4+ T cells and CD8+ T cells from the draining lymph nodes showed activation phenotypes. Our preliminary data showed that combination therapy also increased the number of neoantigens-specific IFN-producing splenocytes by an ELISPOT assay. Further studies are required to examine the relationship between tumor relapse and the dynamics of neoantigens-specific T cells. Moreover, vaccinations with the predicted neoantigens may further strengthen the antitumor T cells and provide long-lasting protection against tumor relapse following the primary cancer therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:32:33Z (GMT). No. of bitstreams: 1 ntu-107-R04424026-1.pdf: 8651001 bytes, checksum: 2ea2f85cbc1b6a57b901a92a18731de1 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 圖目錄 ix 表目錄 xi Chapter 1 緒論 1 1.1 癌症簡介 1 1.1.1 癌細胞特質 1 1.1.2 癌細胞突變與腫瘤抗原 2 1.1.3 癌症傳統治療方法 2 1.2 癌細胞與免疫系統的關係 3 1.2.1 免疫系統控制癌症 3 1.2.2 免疫系統造成腫瘤演化 4 1.2.3 腫瘤逃脫免疫系統控制 4 1.3 癌症免疫治療 5 1.3.1 發展歷史 5 1.3.2 T細胞是癌症免疫治療的關鍵角色 6 1.3.3 放射結合免疫治療 6 1.4 腫瘤抗原與癌症免疫治療 7 1.4.1 腫瘤突變量與免疫治療療效相關 7 1.4.2 應用腫瘤新生抗原進行免疫治療 7 1.5 惡性黑色素瘤模型B16細胞株 7 1.6 Specific aim 8 1.7 實驗設計 8 Chapter 2 材料與方法 9 2.1 腫瘤新生抗原的預測與驗證 9 2.1.1 文獻所報告之癌細胞突變 9 2.1.2 定序確認 9 2.1.3 免疫性預測 9 2.2 活體試驗合併放射與Ad/IL-12、Ad/GM-CSF免疫治療 10 2.2.1 材料製備 10 2.2.2 癌細胞的皮下注射 11 2.2.3 皮下腫瘤的治療 (以合併療法為例) 11 2.2.4 治療效果評估 11 2.2.5 肺轉移的觀察 12 2.3 活體細胞的分離與處理 12 2.3.1 脾臟 12 2.3.2 引流淋巴結 12 2.3.3 腫瘤浸潤白血球 12 2.4 流式細胞儀分析 13 2.5 檢測腫瘤新生抗原特異T細胞反應 13 2.5.1 合成腫瘤新生抗原胜肽 13 2.5.2 抗原呈獻細胞的準備 13 2.5.3 ELISPOT 14 2.6 統計 14 Chapter 3 實驗結果 15 3.1 找尋腫瘤新生抗原 15 3.1.1 驗證腫瘤新生抗原 15 3.1.2 預測腫瘤新生抗原的免疫性 16 3.2 建立B16F10皮下腫瘤動物模型 17 3.2.1 評估B16F10皮下腫瘤施打劑量與生長趨勢 17 3.2.2 驗證B16F10皮下腫瘤生長趨勢 17 3.2.3 探討合併療法的短期療效 17 3.2.4 探討合併療法後之存活率 18 3.2.5 治療時皮下腫瘤大小對合併療法療效的影響 19 3.2.6 比較免疫治療成分對於合併療法療效影響 19 3.3 以流式細胞儀分析合併療法所引起的淋巴球反應 20 3.3.1 腫瘤浸潤白血球數量與比例相對變化 20 3.3.2 脾臟細胞功能變化 21 3.3.3 引流淋巴結細胞功能變化 22 3.4 探討腫瘤新生抗原特異T細胞反應 23 3.4.1 準備抗原呈獻細胞與腫瘤新生抗原 23 3.4.2 未擴增之脾臟CD4+ T細胞直接進行ELISPOT 24 3.4.3 未擴增之脾臟CD8+ T細胞直接進行ELISPOT 25 3.4.4 以短期擴增的脾臟細胞進行ELISPOT 26 3.4.5 以短期擴增的引流淋巴結細胞進行ELISPOT 27 3.4.6 嘗試以腫瘤浸潤淋巴細胞進行ELISPOT 27 Chapter 4 討論 29 4.1 尋找腫瘤新生抗原 29 4.2 活體動物實驗結果探討 30 4.3 發展以腫瘤新生抗原進行免疫治療的策略 31 Reference 32 | |
dc.language.iso | zh-TW | |
dc.title | 探討放射線與免疫治療的合併療法所引發之腫瘤新生抗原特異T細胞反應 | zh_TW |
dc.title | Investigation of Neoantigen-Specific T Cell Response Induced by Combination Therapy of Radiation & Immunotherapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊雅倩(Ya-Chien Yang),莊雅惠(Ya-Hui Chuang),朱清良(Ching-Liang Chu) | |
dc.subject.keyword | 癌症免疫治療,合併療法,腫瘤新生抗原,抗原免疫性預測,抗原特異性T細胞反應, | zh_TW |
dc.subject.keyword | Cancer immunotherapy,Combination therapy,Tumor neoantigen,Immunogenicity prediction,Neoantigen specific T cell response, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU201800331 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 8.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。