請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
| dc.contributor.author | Li-Zhu Liao | en |
| dc.contributor.author | 廖麗茱 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:32:16Z | - |
| dc.date.available | 2026-02-18 | |
| dc.date.copyright | 2021-02-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-18 | |
| dc.identifier.citation | 1. Pons-Renedo F, Llovet JM. Hepatocellular carcinoma: a clinical update. MedGenMed. 2003;5(3):11. Epub 2003/11/06. PubMed PMID: 14600648. 2. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380(15):1450-62. Epub 2019/04/11. doi: 10.1056/NEJMra1713263. PubMed PMID: 30970190. 3. Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology. 2002;35(3):519-24. Epub 2002/03/01. doi: 10.1053/jhep.2002.32089. PubMed PMID: 11870363. 4. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25-34. Epub 2008/12/20. doi: 10.1016/S1470-2045(08)70285-7. PubMed PMID: 19095497. 5. Bruix J, Sherman M, American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020-2. Epub 2011/03/05. doi: 10.1002/hep.24199. PubMed PMID: 21374666; PubMed Central PMCID: PMCPMC3084991. 6. Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39(4):486-92. Epub 2012/08/01. doi: 10.1053/j.seminoncol.2012.05.005. PubMed PMID: 22846865. 7. Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology. 2009;136(1):138-48. Epub 2008/10/14. doi: 10.1053/j.gastro.2008.09.014. PubMed PMID: 18848939; PubMed Central PMCID: PMCPMC3749922. 8. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. Journal of hepatology. 2018;69(4):896-904. Epub 2018/06/11. doi: 10.1016/j.jhep.2018.05.036. PubMed PMID: 29886156. 9. European Association For The Study Of The L, European Organisation For R, Treatment Of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Journal of hepatology. 2012;56(4):908-43. Epub 2012/03/20. doi: 10.1016/j.jhep.2011.12.001. PubMed PMID: 22424438. 10. Llovet JM, Paradis V, Kudo M, Zucman-Rossi J. Tissue biomarkers as predictors of outcome and selection of transplant candidates with hepatocellular carcinoma. Liver Transpl. 2011;17 Suppl 2:S67-71. Epub 2011/05/20. doi: 10.1002/lt.22340. PubMed PMID: 21594967; PubMed Central PMCID: PMCPMC3164216. 11. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894-905. Epub 2020/05/14. doi: 10.1056/NEJMoa1915745. PubMed PMID: 32402160. 12. Oliveri RS, Wetterslev J, Gluud C. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2011;(3):CD004787. Epub 2011/03/18. doi: 10.1002/14651858.CD004787.pub2. PubMed PMID: 21412886. 13. Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer. 2017;1868(2):564-70. Epub 2017/10/22. doi: 10.1016/j.bbcan.2017.10.002. PubMed PMID: 29054475. 14. Ezzoukhry Z, Louandre C, Trecherel E, Godin C, Chauffert B, Dupont S, et al. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer. 2012;131(12):2961-9. Epub 2012/04/20. doi: 10.1002/ijc.27604. PubMed PMID: 22514082. 15. Blivet-Van Eggelpoel MJ, Chettouh H, Fartoux L, Aoudjehane L, Barbu V, Rey C, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. Journal of hepatology. 2012;57(1):108-15. Epub 2012/03/15. doi: 10.1016/j.jhep.2012.02.019. PubMed PMID: 22414764. 16. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res. 2010;30(12):4951-8. Epub 2010/12/29. PubMed PMID: 21187475; PubMed Central PMCID: PMCPMC3141822. 17. Kim JY, Lee JY. Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci. 2017;18(9). Epub 2017/08/26. doi: 10.3390/ijms18091854. PubMed PMID: 28841148; PubMed Central PMCID: PMCPMC5618503. 18. Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1alpha inhibition in hepatocellular carcinoma. Hepatology. 2013;57(5):1847-57. Epub 2013/01/10. doi: 10.1002/hep.26224. PubMed PMID: 23299930. 19. Tovar V, Cornella H, Moeini A, Vidal S, Hoshida Y, Sia D, et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut. 2017;66(3):530-40. Epub 2015/12/15. doi: 10.1136/gutjnl-2015-309501. PubMed PMID: 26658144; PubMed Central PMCID: PMCPMC5600200. 20. Chow AK, Ng L, Lam CS, Wong SK, Wan TM, Cheng NS, et al. The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 2013;8(11):e78675. Epub 2013/11/19. doi: 10.1371/journal.pone.0078675. PubMed PMID: 24244338; PubMed Central PMCID: PMCPMC3823841. 21. Ding W, You H, Dang H, LeBlanc F, Galicia V, Lu SC, et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology. 2010;52(3):945-53. Epub 2010/06/22. doi: 10.1002/hep.23748. PubMed PMID: 20564331; PubMed Central PMCID: PMCPMC3032356. 22. Yamada S, Okumura N, Wei L, Fuchs BC, Fujii T, Sugimoto H, et al. Epithelial to mesenchymal transition is associated with shorter disease-free survival in hepatocellular carcinoma. Ann Surg Oncol. 2014;21(12):3882-90. Epub 2014/05/17. doi: 10.1245/s10434-014-3779-2. PubMed PMID: 24833103. 23. Ma JL, Zeng S, Zhang Y, Deng GL, Shen H. Epithelial-mesenchymal transition plays a critical role in drug resistance of hepatocellular carcinoma cells to oxaliplatin. Tumour Biol. 2016;37(5):6177-84. Epub 2015/11/29. doi: 10.1007/s13277-015-4458-z. PubMed PMID: 26614432. 24. Chen X, Lingala S, Khoobyari S, Nolta J, Zern MA, Wu J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. Journal of hepatology. 2011;55(4):838-45. Epub 2011/02/22. doi: 10.1016/j.jhep.2010.12.043. PubMed PMID: 21334406; PubMed Central PMCID: PMCPMC3177032. 25. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-90. Epub 2009/12/01. doi: 10.1016/j.cell.2009.11.007. PubMed PMID: 19945376. 26. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741-51. Epub 2010/06/10. doi: 10.1038/onc.2010.215. PubMed PMID: 20531305; PubMed Central PMCID: PMCPMC3176718. 27. Verslype C, Van Cutsem E, Dicato M, Arber N, Berlin JD, Cunningham D, et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 10th World Congress on Gastrointestinal Cancer, Barcelona, 2008. Annals of oncology : official journal of the European Society for Medical Oncology. 2009;20 Suppl 7:vii1-vii6. Epub 2009/06/13. doi: 10.1093/annonc/mdp281. PubMed PMID: 19497945. 28. Song Z, Liu T, Chen J, Ge C, Zhao F, Zhu M, et al. HIF-1alpha-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer letters. 2019;460:96-107. Epub 2019/06/28. doi: 10.1016/j.canlet.2019.06.016. PubMed PMID: 31247273. 29. Gong XL, Qin SK. Progress in systemic therapy of advanced hepatocellular carcinoma. World J Gastroenterol. 2016;22(29):6582-94. Epub 2016/08/23. doi: 10.3748/wjg.v22.i29.6582. PubMed PMID: 27547002; PubMed Central PMCID: PMCPMC4970483. 30. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599-616. Epub 2018/08/01. doi: 10.1038/s41571-018-0073-4. PubMed PMID: 30061739. 31. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-90. Epub 2008/07/25. doi: 10.1056/NEJMoa0708857. PubMed PMID: 18650514. 32. Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 2017;38(5):614-22. Epub 2017/03/28. doi: 10.1038/aps.2017.5. PubMed PMID: 28344323; PubMed Central PMCID: PMCPMC5457690. 33. Zhang Z, Zhou X, Shen H, Wang D, Wang Y. Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med. 2009;7:41. Epub 2009/08/25. doi: 10.1186/1741-7015-7-41. PubMed PMID: 19698189; PubMed Central PMCID: PMCPMC2738687. 34. Chen CT, Liao LZ, Lu CH, Huang YH, Lin YK, Lin JH, et al. Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med. 2020. Epub 2020/03/24. doi: 10.1038/s12276-020-0404-2. PubMed PMID: 32203105. 35. Maurya PK, Mishra A, Yadav BS, Singh S, Kumar P, Chaudhary A, et al. Role of Y Box Protein-1 in cancer: As potential biomarker and novel therapeutic target. J Cancer. 2017;8(10):1900-7. Epub 2017/08/19. doi: 10.7150/jca.17689. PubMed PMID: 28819388; PubMed Central PMCID: PMCPMC5556654. 36. Wu J, Stratford AL, Astanehe A, Dunn SE. YB-1 is a Transcription/Translation Factor that Orchestrates the Oncogenome by Hardwiring Signal Transduction to Gene Expression. Translational oncogenomics. 2007;2:49-65. Epub 2007/01/01. PubMed PMID: 23641145; PubMed Central PMCID: PMCPMC3634714. 37. Ou DL, Shen YC, Yu SL, Chen KF, Yeh PY, Fan HH, et al. Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells 2010. 38. Yeh CC, Hsu CH, Shao YY, Ho WC, Tsai MH, Feng WC, et al. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer. Molecular cellular proteomics : MCP. 2015;14(6):1527-45. doi: 10.1074/mcp.M114.046417. PubMed PMID: 25850433; PubMed Central PMCID: PMC4458718. 39. Su YL, Yang JC, Lee H, Sheu F, Hsu CH, Lin SL, et al. The C-terminal disulfide bonds of Helicobacter pylori GroES are critical for IL-8 secretion via the TLR4-dependent pathway in gastric epithelial cells. J Immunol. 2015;194(8):3997-4007. Epub 2015/03/15. doi: 10.4049/jimmunol.1401852. PubMed PMID: 25769921. 40. Zhou LL, Ni J, Feng WT, Yao R, Yue S, Zhu YN, et al. High YBX1 expression indicates poor prognosis and promotes cell migration and invasion in nasopharyngeal carcinoma. Exp Cell Res. 2017;361(1):126-34. Epub 2017/10/13. doi: 10.1016/j.yexcr.2017.10.009. PubMed PMID: 29024700. 41. Cao L, Zhou Y, Zhai B, Liao J, Xu W, Zhang R, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71. Epub 2011/06/15. doi: 10.1186/1471-230X-11-71. PubMed PMID: 21669008; PubMed Central PMCID: PMCPMC3136412. 42. Yasen M, Kajino K, Kano S, Tobita H, Yamamoto J, Uchiumi T, et al. The up-regulation of Y-box binding proteins (DNA binding protein A and Y-box binding protein-1) as prognostic markers of hepatocellular carcinoma. Clin Cancer Res. 2005;11(20):7354-61. Epub 2005/10/26. doi: 10.1158/1078-0432.CCR-05-1027. PubMed PMID: 16243807. 43. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Developmental biology. 2004;265(1):23-32. Epub 2003/12/31. doi: 10.1016/j.ydbio.2003.06.003. PubMed PMID: 14697350. 44. Sutherland BW, Kucab J, Wu J, Lee C, Cheang MC, Yorida E, et al. Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene. 2005;24(26):4281-92. Epub 2005/04/05. doi: 10.1038/sj.onc.1208590. PubMed PMID: 15806160. 45. Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, et al. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 2010;16(21):5189-99. Epub 2010/10/05. doi: 10.1158/1078-0432.CCR-09-3389. PubMed PMID: 20884624. 46. Tarasewicz E, Rivas L, Hamdan R, Dokic D, Parimi V, Bernabe BP, et al. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells. Cell cycle. 2014;13(20):3191-201. Epub 2014/12/09. doi: 10.4161/15384101.2014.950126. PubMed PMID: 25485498; PubMed Central PMCID: PMCPMC4614520. 47. Hinsch A, Chaker A, Burdelski C, Koop C, Tsourlakis MC, Steurer S, et al. betaIII-tubulin overexpression is linked to aggressive tumor features and genetic instability in urinary bladder cancer. Hum Pathol. 2017;61:210-20. Epub 2016/12/28. doi: 10.1016/j.humpath.2016.11.005. PubMed PMID: 28025079. 48. Xie T, Li X, Ye F, Lu C, Huang H, Wang F, et al. High KIF2A expression promotes proliferation, migration and predicts poor prognosis in lung adenocarcinoma. Biochemical and biophysical research communications. 2018;497(1):65-72. Epub 2018/02/11. doi: 10.1016/j.bbrc.2018.02.020. PubMed PMID: 29427669. 49. Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal. 2014;7(354):rs7. Epub 2014/12/04. doi: 10.1126/scisignal.2005473. PubMed PMID: 25468996; PubMed Central PMCID: PMCPMC4972397. 50. Garcin C, Straube A. Microtubules in cell migration. Essays Biochem. 2019;63(5):509-20. Epub 2019/07/31. doi: 10.1042/EBC20190016. PubMed PMID: 31358621; PubMed Central PMCID: PMCPMC6823166. 51. Li HP, Peng CC, Wu CC, Chen CH, Shih MJ, Huang MY, et al. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2018;37(1):102. Epub 2018/05/12. doi: 10.1186/s13046-018-0754-y. PubMed PMID: 29747653; PubMed Central PMCID: PMCPMC5946489. 52. Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? Journal of cell science. 2012;125(Pt 12):2805-14. Epub 2012/06/28. doi: 10.1242/jcs.092429. PubMed PMID: 22736044. 53. Verhey KJ, Gaertig J. The tubulin code. Cell cycle. 2007;6(17):2152-60. Epub 2007/09/06. doi: 10.4161/cc.6.17.4633. PubMed PMID: 17786050. 54. Saito Y, Takasawa A, Takasawa K, Aoyama T, Akimoto T, Ota M, et al. Aldolase A promotes epithelial-mesenchymal transition to increase malignant potentials of cervical adenocarcinoma. Cancer science. 2020;111(8):3071-81. Epub 2020/06/13. doi: 10.1111/cas.14524. PubMed PMID: 32530543; PubMed Central PMCID: PMCPMC7419050. 55. Khalid M, Idichi T, Seki N, Wada M, Yamada Y, Fukuhisa H, et al. Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation. Cancers (Basel). 2019;11(3). Epub 2019/03/15. doi: 10.3390/cancers11030327. PubMed PMID: 30866526; PubMed Central PMCID: PMCPMC6468488. 56. Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol. 2017;27(1):12-25. Epub 2016/09/17. doi: 10.1016/j.tcb.2016.08.003. PubMed PMID: 27634432; PubMed Central PMCID: PMCPMC5186408. 57. Ci C, Tang B, Lyu D, Liu W, Qiang D, Ji X, et al. Overexpression of CDCA8 promotes the malignant progression of cutaneous melanoma and leads to poor prognosis. Int J Mol Med. 2019;43(1):404-12. Epub 2018/11/16. doi: 10.3892/ijmm.2018.3985. PubMed PMID: 30431060; PubMed Central PMCID: PMCPMC6257860. 58. Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J, et al. Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med. 2020;12(1):e10880. Epub 2019/11/12. doi: 10.15252/emmm.201910880. PubMed PMID: 31709755; PubMed Central PMCID: PMCPMC6949511. 59. Caldon CE. Cdk2 regulates metastasis suppressor BRMS1. Cell cycle. 2016;15(6):779-80. Epub 2016/01/06. doi: 10.1080/15384101.2015.1136521. PubMed PMID: 26730572; PubMed Central PMCID: PMCPMC4845924. 60. MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55. 2018;19(4):306-15. doi: 10.1080/15384047.2017.1416934. PubMed PMID: 29561704. 61. Bao J, Yu Y, Chen J, He Y, Chen X, Ren Z, et al. MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis. 2018;9(10):1045. Epub 2018/10/14. doi: 10.1038/s41419-018-1020-0. PubMed PMID: 30315225; PubMed Central PMCID: PMCPMC6185973. 62. Wang B, Shen Y, Zou Y, Qi Z, Huang G, Xia S, et al. TOP2A Promotes Cell Migration, Invasion and Epithelial-Mesenchymal Transition in Cervical Cancer via Activating the PI3K/AKT Signaling. Cancer Manag Res. 2020;12:3807-14. Epub 2020/06/18. doi: 10.2147/CMAR.S240577. PubMed PMID: 32547216; PubMed Central PMCID: PMCPMC7251484. 63. Fujii T, Nomoto S, Koshikawa K, Yatabe Y, Teshigawara O, Mori T, et al. Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. Hepatology. 2006;43(6):1267-75. Epub 2006/04/22. doi: 10.1002/hep.21181. PubMed PMID: 16628605. 64. Jiang L, Zhou J, Zhong D, Zhou Y, Zhang W, Wu W, et al. Overexpression of SMC4 activates TGFbeta/Smad signaling and promotes aggressive phenotype in glioma cells. Oncogenesis. 2017;6(3):e301. Epub 2017/03/14. doi: 10.1038/oncsis.2017.8. PubMed PMID: 28287612; PubMed Central PMCID: PMCPMC5533949. 65. Jing JJ, Lu YZ, Sun LP, Liu JW, Gong YH, Xu Q, et al. Epistatic SNP interaction of ERCC6 with ERCC8 and their joint protein expression contribute to gastric cancer/atrophic gastritis risk. Oncotarget. 2017;8(26):43140-52. Epub 2017/06/01. doi: 10.18632/oncotarget.17814. PubMed PMID: 28562347; PubMed Central PMCID: PMCPMC5522134. 66. Goodarzi H, Zhang S, Buss CG, Fish L, Tavazoie S, Tavazoie SF. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature. 2014;513(7517):256-60. Epub 2014/07/22. doi: 10.1038/nature13466. PubMed PMID: 25043050; PubMed Central PMCID: PMCPMC4440807. 67. Manning M, Jiang Y, Wang R, Liu L, Rode S, Bonahoom M, et al. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biol. 2020;17(4):474-86. Epub 2020/01/21. doi: 10.1080/15476286.2019.1708549. PubMed PMID: 31957540; PubMed Central PMCID: PMCPMC7237164. 68. Sieron P, Hader C, Hatina J, Engers R, Wlazlinski A, Muller M, et al. DKC1 overexpression associated with prostate cancer progression. Br J Cancer. 2009;101(8):1410-6. Epub 2009/09/17. doi: 10.1038/sj.bjc.6605299. PubMed PMID: 19755982; PubMed Central PMCID: PMCPMC2768451. 69. Yassin ER, Abdul-Nabi AM, Takeda A, Yaseen NR. Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif. Leukemia. 2010;24(5):1001-11. Epub 2010/03/27. doi: 10.1038/leu.2010.42. PubMed PMID: 20339440; PubMed Central PMCID: PMCPMC2868946. 70. Xu H, Yu S, Yuan X, Xiong J, Kuang D, Pestell RG, et al. DACH1 suppresses breast cancer as a negative regulator of CD44. Scientific reports. 2017;7(1):4361. Epub 2017/07/01. doi: 10.1038/s41598-017-04709-2. PubMed PMID: 28659634; PubMed Central PMCID: PMCPMC5489534. 71. Wu H, Qin W, Lu S, Wang X, Zhang J, Sun T, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19(1):95. Epub 2020/05/24. doi: 10.1186/s12943-020-01201-w. PubMed PMID: 32443980; PubMed Central PMCID: PMCPMC7243338. 72. Itoh G, Sugino S, Ikeda M, Mizuguchi M, Kanno S, Amin MA, et al. Nucleoporin Nup188 is required for chromosome alignment in mitosis. Cancer science. 2013;104(7):871-9. Epub 2013/04/05. doi: 10.1111/cas.12159. PubMed PMID: 23551833; PubMed Central PMCID: PMCPMC7657133. 73. Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, et al. Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. Oxid Med Cell Longev. 2018;2018:1027453. Epub 2019/01/24. doi: 10.1155/2018/1027453. PubMed PMID: 30671168; PubMed Central PMCID: PMCPMC6323533. 74. Aydin B, Arga KY. Co-expression Network Analysis Elucidated a Core Module in Association With Prognosis of Non-functioning Non-invasive Human Pituitary Adenoma. Front Endocrinol (Lausanne). 2019;10:361. Epub 2019/06/28. doi: 10.3389/fendo.2019.00361. PubMed PMID: 31244774; PubMed Central PMCID: PMCPMC6563679. 75. Xiong W, Wang W, Huang H, Jiang Y, Guo W, Liu H, et al. Prognostic Significance of PSMD1 Expression in Patients with Gastric Cancer. J Cancer. 2019;10(18):4357-67. Epub 2019/08/16. doi: 10.7150/jca.31543. PubMed PMID: 31413756; PubMed Central PMCID: PMCPMC6691719. 76. Kusonmano K, Halle MK, Wik E, Hoivik EA, Krakstad C, Mauland KK, et al. Identification of highly connected and differentially expressed gene subnetworks in metastasizing endometrial cancer. PLoS One. 2018;13(11):e0206665. Epub 2018/11/02. doi: 10.1371/journal.pone.0206665. PubMed PMID: 30383835; PubMed Central PMCID: PMCPMC6211718. 77. Nyati S, Gregg BS, Xu J, Young G, Kimmel L, Nyati MK, et al. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-beta signaling. Neoplasia. 2020;22(4):163-78. Epub 2020/03/07. doi: 10.1016/j.neo.2020.02.001. PubMed PMID: 32143140; PubMed Central PMCID: PMCPMC7057164. 78. Harvey SE, Xu Y, Lin X, Gao XD, Qiu Y, Ahn J, et al. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA. 2018;24(10):1326-38. Epub 2018/07/26. doi: 10.1261/rna.066712.118. PubMed PMID: 30042172; PubMed Central PMCID: PMCPMC6140460. 79. Huang X, He M, Huang S, Lin R, Zhan M, Yang D, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription. Mol Cancer. 2019;18(1):166. Epub 2019/11/23. doi: 10.1186/s12943-019-1098-8. PubMed PMID: 31752867; PubMed Central PMCID: PMCPMC6868820. 80. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. The Journal of biological chemistry. 2012;287(23):19516-27. Epub 2012/04/19. doi: 10.1074/jbc.M111.337428. PubMed PMID: 22511756; PubMed Central PMCID: PMCPMC3365988. 81. Tsai MM, Huang HW, Wang CS, Lee KF, Tsai CY, Lu PH, et al. MicroRNA-26b inhibits tumor metastasis by targeting the KPNA2/c-jun pathway in human gastric cancer. Oncotarget. 2016;7(26):39511-26. Epub 2016/10/27. doi: 10.18632/oncotarget.8629. PubMed PMID: 27078844; PubMed Central PMCID: PMCPMC5129949. 82. Habibi G, Leung S, Law JH, Gelmon K, Masoudi H, Turbin D, et al. Redefining prognostic factors for breast cancer: YB-1 is a stronger predictor of relapse and disease-specific survival than estrogen receptor or HER-2 across all tumor subtypes. Breast cancer research : BCR. 2008;10(5):R86. Epub 2008/10/18. doi: 10.1186/bcr2156. PubMed PMID: 18925950; PubMed Central PMCID: PMCPMC2614522. 83. Zhang Y, Woodford N, Xia X, Hamburger AW. Repression of E2F1-mediated transcription by the ErbB3 binding protein Ebp1 involves histone deacetylases. Nucleic acids research. 2003;31(8):2168-77. Epub 2003/04/12. doi: 10.1093/nar/gkg318. PubMed PMID: 12682367; PubMed Central PMCID: PMCPMC153746. 84. Nguyen le XT, Lee Y, Urbani L, Utz PJ, Hamburger AW, Sunwoo JB, et al. Regulation of ribosomal RNA synthesis in T cells: requirement for GTP and Ebp1. Blood. 2015;125(16):2519-29. Epub 2015/02/19. doi: 10.1182/blood-2014-12-616433. PubMed PMID: 25691158; PubMed Central PMCID: PMCPMC4400289. 85. Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, et al. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol. 2018;233(12):9110-20. Epub 2018/08/05. doi: 10.1002/jcp.26951. PubMed PMID: 30076717. 86. Zhang E, Liu S, Xu Z, Huang S, Tan X, Sun C, et al. Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in oral squamous cell carcinoma (OSCC) and promotes migration, invasion and epithelial-mesenchymal transition (EMT) in SCC15 cells. Tumour Biol. 2014;35(9):8801-11. Epub 2014/06/01. doi: 10.1007/s13277-014-2143-2. PubMed PMID: 24879625. 87. Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A, Chern E. Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/beta-catenin pathway. Oncotarget. 2017;8(2):2604-16. Epub 2016/12/03. doi: 10.18632/oncotarget.13733. PubMed PMID: 27911878; PubMed Central PMCID: PMCPMC5356827. 88. Zhang H, Wang Q, Liu J, Cao H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett. 2018;15(6):9377-84. Epub 2018/06/22. doi: 10.3892/ol.2018.8536. PubMed PMID: 29928334; PubMed Central PMCID: PMCPMC6004698. 89. Dong J, Zhai B, Sun W, Hu F, Cheng H, Xu J. Activation of phosphatidylinositol 3-kinase/AKT/snail signaling pathway contributes to epithelial-mesenchymal transition-induced multi-drug resistance to sorafenib in hepatocellular carcinoma cells. PLoS One. 2017;12(9):e0185088. Epub 2017/09/22. doi: 10.1371/journal.pone.0185088. PubMed PMID: 28934275; PubMed Central PMCID: PMCPMC5608310. 90. Lu M, Fei Z, Zhang G. Synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in hepatocellular carcinoma by modulating PTEN/Akt signaling pathway. Biomed Pharmacother. 2018;97:1282-8. Epub 2017/11/22. doi: 10.1016/j.biopha.2017.11.006. PubMed PMID: 29156516. 91. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320-8. Epub 2011/05/03. doi: 10.1016/j.tibs.2011.03.006. PubMed PMID: 21531565; PubMed Central PMCID: PMCPMC3112285. 92. Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010;27(2):255-61. Epub 2009/03/21. doi: 10.1007/s12032-009-9201-4. PubMed PMID: 19301157. 93. Sinnberg T, Sauer B, Holm P, Spangler B, Kuphal S, Bosserhoff A, et al. MAPK and PI3K/AKT mediated YB-1 activation promotes melanoma cell proliferation which is counteracted by an autoregulatory loop. Exp Dermatol. 2012;21(4):265-70. Epub 2012/03/16. doi: 10.1111/j.1600-0625.2012.01448.x. PubMed PMID: 22417301. 94. Schmid R, Meyer K, Spang R, Schittek B, Bosserhoff AK. Melanoma inhibitory activity promotes melanoma development through activation of YBX1. Pigment Cell Melanoma Res. 2013;26(5):685-96. Epub 2013/05/16. doi: 10.1111/pcmr.12119. PubMed PMID: 23672612. 95. Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21(8):1951-61. Epub 2014/09/25. doi: 10.1158/1078-0432.CCR-14-0122. PubMed PMID: 25248380. 96. Pribluda A, de la Cruz CC, Jackson EL. Intratumoral Heterogeneity: From Diversity Comes Resistance. Clin Cancer Res. 2015;21(13):2916-23. Epub 2015/04/04. doi: 10.1158/1078-0432.CCR-14-1213. PubMed PMID: 25838394. 97. Caramel J, Ligier M, Puisieux A. Pleiotropic Roles for ZEB1 in Cancer. Cancer research. 2018;78(1):30-5. Epub 2017/12/20. doi: 10.1158/0008-5472.CAN-17-2476. PubMed PMID: 29254997. 98. Evdokimova V, Ovchinnikov LP, Sorensen PH. Y-box binding protein 1: providing a new angle on translational regulation. Cell cycle. 2006;5(11):1143-7. Epub 2006/05/25. doi: 10.4161/cc.5.11.2784. PubMed PMID: 16721060. 99. Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene. 2018;37(44):5811-28. Epub 2018/07/05. doi: 10.1038/s41388-018-0382-1. PubMed PMID: 29970904. 100. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464-74. Epub 2009/10/13. doi: 10.1002/hep.23221. PubMed PMID: 19821482. 101. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11-22. Epub 2017/12/28. doi: 10.1016/j.critrevonc.2017.11.010. PubMed PMID: 29279096. 102. Pang T, Li M, Zhang Y, Yong W, Kang H, Yao Y, et al. Y Box-Binding Protein 1 Promotes Epithelial-Mesenchymal Transition, Invasion, and Metastasis of Cervical Cancer via Enhancing the Expressions of Snail. Int J Gynecol Cancer. 2017;27(8):1753-60. Epub 2017/07/15. doi: 10.1097/IGC.0000000000001066. PubMed PMID: 28708785. 103. Deng JJ, Zhang W, Xu XM, Zhang F, Tao WP, Ye JJ, et al. Twist mediates an aggressive phenotype in human colorectal cancer cells. Int J Oncol. 2016;48(3):1117-24. Epub 2016/01/20. doi: 10.3892/ijo.2016.3342. PubMed PMID: 26782761. 104. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, et al. Twist promotes tumor cell growth through YB-1 expression. Cancer research. 2008;68(1):98-105. doi: 10.1158/0008-5472.CAN-07-2981. PubMed PMID: 18172301. 105. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer cell. 2009;15(5):402-15. Epub 2009/05/05. doi: 10.1016/j.ccr.2009.03.017. PubMed PMID: 19411069. 106. Li S, Luo W. Matrix metalloproteinase 2 contributes to aggressive phenotype, epithelial-mesenchymal transition and poor outcome in nasopharyngeal carcinoma. Onco Targets Ther. 2019;12:5701-11. Epub 2019/08/15. doi: 10.2147/OTT.S202280. PubMed PMID: 31410017; PubMed Central PMCID: PMCPMC6646049. 107. Mertens PR, Harendza S, Pollock AS, Lovett DH. Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1. The Journal of biological chemistry. 1997;272(36):22905-12. Epub 1997/09/05. doi: 10.1074/jbc.272.36.22905. PubMed PMID: 9278454. 108. Battaglia RA, Delic S, Herrmann H, Snider NT. Vimentin on the move: new developments in cell migration. F1000Res. 2018;7. Epub 2018/12/07. doi: 10.12688/f1000research.15967.1. PubMed PMID: 30505430; PubMed Central PMCID: PMCPMC6241562. 109. Yan XB, Zhu QC, Chen HQ, Peng JY, Chao HL, Du HX, et al. Knockdown of Yboxbinding protein1 inhibits the malignant progression of HT29 colorectal adenocarcinoma cells by reversing epithelialmesenchymal transition. Mol Med Rep. 2014;10(5):2720-8. Epub 2014/09/10. doi: 10.3892/mmr.2014.2545. PubMed PMID: 25201740. 110. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology. 2000;2(2):84-9. doi: 10.1038/35000034. PubMed PMID: 10655587. 111. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. The Journal of biological chemistry. 1998;273(45):29745-53. Epub 1998/10/29. doi: 10.1074/jbc.273.45.29745. PubMed PMID: 9792688. 112. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1-2):15-33. Epub 2009/01/27. doi: 10.1007/s10555-008-9169-0. PubMed PMID: 19169796. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69882 | - |
| dc.description.abstract | 肝癌在全世界中是一常見的癌症型態。在疾病晚期的案例中,蕾莎瓦被認為是一個較好的治療選擇,然而,蕾莎瓦的抗藥性對於臨床的有效應用,仍然是一重要的阻礙原因。根據我們先前實驗室所建立的定量磷酸化蛋白體學結果,並結合目前癌症基因體圖譜資料分析,我們找到一個轉錄因子,YB-1,其絲胺酸102磷酸化位點在蕾莎瓦抗藥性的肝癌細胞 (HuH-7R) 中具有顯著上升的表達量。隨著蕾莎瓦的治療,發現會活化PI3K和AKT訊息傳遞途徑,並增加YB-1的磷酸化表現量。在功能性分析中,抑制YB-1的表現會減少細胞的爬行和侵襲能力。在分子層次,抑制YB-1進而也會抑制Snail, Twist1, Zeb1, MMP-2 和 Vimentin的表現量,這些結果都顯示著YB-1在HuH-7R細胞之表皮細胞間質轉化過程的可能重要角色。除此之外,YB-1會透過Cdc42途徑的活化,影響F-actin細胞骨架的重新排列,並導致HuH-7R細胞型態外觀上的改變。致突變實驗分析中,我們在HuH-7R細胞中將YB-1的絲胺酸102磷酸化位點進行點突變,發現其將抑制細胞的爬行及侵襲能力。綜合以上的研究結果,在HuH-7R細胞中我們發現蕾莎瓦活化了EGFR/PI3K/AKT途徑,進而促進YB-1的磷酸化並增強了HCC的轉移能力。對於這條特定的致病機制有更深入的了解,將有助於我們去研發新的抗癌藥物及新穎的肝癌治療策略以克服抗藥性等問題。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:32:16Z (GMT). No. of bitstreams: 1 U0001-1502202120481600.pdf: 28705692 bytes, checksum: e62a3ce8d4cbfaa973ff7af1432725c5 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of contents 口試委員會審定書 i 謝誌 ii 中文摘要 iv Abstract v Abbreviations vii Chapter I-Overview 4 Hepatocellular carcinoma 5 1.1 Epidemiology 5 1.2 Types and development of liver cancer 5 1.3 HCC staging and treatment 6 1.3.1 Surgical treatments 7 1.3.2 Locoregional therapies 7 1.3.3 Systemic therapies 8 1.3.4 Sorafenib 10 1.3.5 Mechanisms of sorafenib resistance 10 1.4 Specific aims 12 Chapter II-To identify the mechanism of YB-1 promoted EMT in sorafenib-resistant HCC cells 14 2.1 Introduction 15 2.2 Materials and Methods 19 2.3 Results 25 2.4 Discussion 34 Chapter III- Conclusion and Perspectives 45 Tables and Figures 48 References 84 Appendix and Supplement 98 Published reference 115 | |
| dc.language.iso | en | |
| dc.subject | 肝癌細胞 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 蕾莎瓦 | zh_TW |
| dc.subject | 絲胺酸102磷酸化 | zh_TW |
| dc.subject | 表皮細胞間質轉化 | zh_TW |
| dc.subject | Hepatocellular carcinoma cell | en |
| dc.subject | drug resistance | en |
| dc.subject | sorafenib | en |
| dc.subject | S102 Phosphorylation | en |
| dc.subject | epithelial-mesenchymal transition | en |
| dc.title | YB-1促進蕾莎瓦抗藥性肝癌細胞之表皮細胞間質化 | zh_TW |
| dc.title | Y-Box binding protein-1 promotes epithelial-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 歐大諒(Da-Liang Ou),陳彥榮(Edward Chen),潘思樺(Szu-Hua Pan),陳炳宏(Ping-Hung Chen) | |
| dc.subject.keyword | 肝癌細胞,抗藥性,蕾莎瓦,絲胺酸102磷酸化,表皮細胞間質轉化, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma cell,drug resistance,sorafenib,S102 Phosphorylation,epithelial-mesenchymal transition, | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU202100702 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1502202120481600.pdf 未授權公開取用 | 28.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
