請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周楚洋(Chu-Yang Chou) | |
| dc.contributor.author | Yung-Chieh Chang | en |
| dc.contributor.author | 張詠傑 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:32:13Z | - |
| dc.date.available | 2021-03-01 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-13 | |
| dc.identifier.citation | 中華民國經濟部水利署。2016。中華民國104年水力統計。台中:經濟部水利署。上網日期:2016-9-30。
內政部營建署。2017。全國公共污水處理廠資料管理系統,全國月報表。台北:內政部營建署。網址:http://sewagework.cpami.gov.tw/report/SewageWorkerTotalReportI.aspx。上網日期:2017-6-21。 林秀靜。2014。應用包埋式混合厭氧菌處理生活污水。碩士論文。臺北:臺灣大學生物產業機電工程學系。 黃郁雯。2012。微生物燃料電池與儲電系統效能之探討。碩士論文。臺北:臺灣大學生物產業機電工程學系。 梁战备、史奕、岳进。2004。甲烷氧化菌研究進展。出自〝生態學雜誌〞,5,198-205。 MGE. 2017. Business Energy Advisor: 2017. Madison Gas and Electric Company Database. Madison, Wisconsin.: MGE Madison Gas and Electric Company Service. Available at: www.mge.com/saving-energy/business/bea/article_detail.htm?nid=2431. Accessed 21 June 2017. Ahmad, S. A., N. A. Shamaan, N. M. Arif, G. B. Koon, M. Y. A. Shukor, and M. A. Syed. 2012. Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World J. Microbiol. Biotechnol. 28(1): 347-352. Aziz, H. A., T. J. Ling, A. A. M. Haque, M. Umar, and M. N. Adlan. 2011. Leachate treatment by swim-bed bio fringe technology. Desalination 276(1): 278-286. Bae, W., D. Han, F. Cui, & M. Kim. 2014. Microbial evaluation for biodegradability of recalcitrant organic in textile wastewater using an immobilized-cell activated sludge process. KSCE J. Civ. Eng. 18(4): 964-970. Barwal, A., and R. Chaudhary. 2014. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Rev. Environ. Sci. Biotechnol. 13(3): 285-299. Chou, C. Y. 1989. Computer control of an anaerobic reactor utilizing a nonlinear self-tuning regulator. Doctoral dissertation, University of Florida. Cohen, Y. 2001. Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour. Technol. 77(3): 257-274. Cord-Ruwisch, R., H. J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology, 149(4), 350-357. Deng, L., W. Guo, H. H. Ng, X. Zhang, X. C. Wang, Q. Zhang, and R. Chen. 2016. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresource technology, 208, 87-93. Dong, Y., S. Q. Fan, Y. Shen, J. X. Yang, P. Yan, Y. P. Chen, ... and S. Y. Liu. 2015. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment. Sci. Rep. 5. Dong, Z., M. Lu, W. Huang, and X. Xu. 2011. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. Journal of hazardous materials, 196, 123-130. Fricke, K., F. Harnisch, and U. Schröder. 2008. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy & Environmental Science, 1(1), 144-147. Gapes, D. J., and J. Keller. 2009. Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. Process Biochem. 44(1): 43-53. Heitkamp, M. A., V. Camel, T. J. Reuter, and W. J. Adams. 1990. Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria. Appl. Environ. Microbiol. 56(10): 2967-2973. Henze, M. (Ed.). 2008. Biological wastewater treatment: principles, modelling and design. IWA publishing. Karel, S. F., S. B. Libicki, and C. R. Robertson. 1985. The immobilization of whole cells: engineering principles. Chem. Eng. Sci. 40(8): 1321-1354. Khan, H., and W. Bae. 2014. Rapid start-up and efficient long-term nitritation of low strength ammonium wastewater with a sequencing batch reactor containing immobilized cells. Water Sci. Technol. 70(3): 517-523. Katuri, K. P., P. Kavanagh, S. Rengaraj, and D. Leech. 2010. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Chemical Communications, 46(26), 4758-4760. Leiknes, T., and H. Ødegaard. 2007. The development of a biofilm membrane bioreactor. Desalination 202(1): 135-143. Martins, S. C. S., C. M. Martins, L. M. C. G. Fiúza, and S. T. Santaella. 2013. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. Afr. J. Biotechnol. 12(28). Melidis, P., E. Vaiopoulou, E. Athanasoulia, and A. Aivasidis. 2009. Anaerobic treatment of domestic wastewater using an anaerobic fixed-bed loop reactor. Desalination 248(1): 716-722. Nemat, M., and C. Webb. 2011. Immobilized Cell Bioreactors. Engineering Fundamentals of Biotechnology(2): 331-346. Picioreanu, C., M. C. van Loosdrecht, and J. J. Heijnen. 2000. A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol. Bioeng. 68(4): 355-369. Rouse, J. D., D. Yazaki, Y. Cheng, T. Koyama, and K. Furukawa. 2004. Swim-bed technology as an innovative attached-growth process for high-rate wastewater treatment. Japanese Journal of Water Treatment Biology, 40(3): 115-124. Seib, M. D., K. J. Berg, and D. H. Zitomer. 2016. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community. Bioresource technology, 216, 446-452. Verma, M., S. K. Brar, J. F. Blais, R. D. Tyagi, and R. Y. Surampalli. 2006s. Aerobic biofiltration processes—Advances in wastewater treatment. Pract. period. hazard., toxic, radioact. waste manag. 10(4): 264-276. Wang, Y., Y. Liu, M. Feng, and L. Wang. 2017. Study of the treatment of domestic sewage using PVA gel beads as a biomass carrier. Journal of Water Reuse and Desalination, jwrd2017181. Yue, J. 2016. High-strength ethylene glycol wastewater treatment in anaerobic polyvinyl alcohol gel beads based biofilm reactor. GLOBAL NEST JOURNAL, 18(1), 47-55. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69881 | - |
| dc.description.abstract | 厭氧消化通常用於高濃度有機廢棄物之處理,不被視為生活污水的處理方法之一。然而,其節省曝氣能源和生產比傳統化石燃料更清潔之可燃氣體–甲烷,此優勢使其更具有使用價值。生物載體(Bio-carrier)因其可攜帶性和有效性已廣泛用於廢水處理,影響生物載體性能的因素如面積、孔隙度和水流量。在本研究中,以3D列印技術製造生物載體以解決上述困難,並運用固定化(Immobilized)技術包覆高濃度厭氧菌種提升載體的效能。在不同的水力停留時間(HRT)下進行實驗,監測進流與出流之pH、總固體(TS)、懸浮固體(SS)和化學需氧量(COD)等水質參數,以及氣體產量與甲烷含量,藉此探討3D列印生物載體的性能以找出其最佳操作條件。實驗結果發現,填充3D生物載體之厭氧反應器可以在HRT 1.5小時下處理COD濃度為475 mg/L之人工廢水,並能成功滿足排放標準。且在HRT 1小時下處理COD濃度約為221.8 mg/L之生活污水,滿足排放標準。 | zh_TW |
| dc.description.abstract | Anaerobic digestion was normally used in treatment of high organic wastes and not considered as the sole treatment for domestic sewage. However, its advantages in saving aeration energy and production of combustible biogas – methane, a cleaner energy than traditional fossil fuel, makes it more attractive nowadays. Bio-carrier has been broadly used in wastewater treatment for its portability and effectiveness. Some factors such as specific area, porosity and water flow will affect its performance. In this study, 3-D printing had been applied in fabricating the bio-carriers to deal with these difficulties. Integrate immobilized technology to entrap high concentration of anaerobic bacteria in bio-carriers for higher efficiency. Experiments were conducted at different hydraulic retention times (HRT). The water characteristics including pH, total solids (TS), suspended solids (SS) and chemical oxygen demand (COD) for both influent and effluent, and the gas production, methane content were monitored to investigate the optimal design and operational strategy for the 3-D printing bio-carriers. Experimental results showed the anaerobic reactor packed with the 3-D bio-carriers could treat the low concentration artificial wastewater at COD concentration of 475 mg/L at HRT of 1.5 hours and able to meet the EPA effluent standard successfully. And treat domestic sewage at COD concentration of about 221.8 mg/L at HRT of 1 hour and able to meet the EPA effluent standard. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:32:13Z (GMT). No. of bitstreams: 1 ntu-107-R04631012-1.pdf: 1785913 bytes, checksum: 02f9b9d5101b343af26fd3ed4ed17f97 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 研究目的 1 第二章 文獻探討 3 2.1 固定化細胞 3 2.1.1 固定化原理 3 2.1.2 固定化分類 3 2.2 固定化細胞處理廢水之研究 6 2.2.1 包埋式固定化細胞 6 2.2.2 生物載體式固定化細胞 7 2.2.3 3D列印之固定化細胞 10 2.3 以循環伏安法分析生物膜生長狀況 13 第三章 材料與方法 14 3.1 實驗流程 14 3.2 實驗材料 16 3.2.1 厭氧污泥 16 3.2.2 3D生物球製備 16 3.2.3 進流基質 17 3.3 實驗設備 18 3.3.1 3D列印設備 18 3.3.2 反應槽主體 18 3.4 分析方法 18 3.4.1 水質分析 18 3.4.2 氣體收集與量測 20 3.4.3 電化學循環伏安法分析法 21 第四章 結果與討論 22 4.1 3D生物球之成品 22 4.1.1 3D生物球之電腦模型 22 4.1.2 3D生物球之成品 24 4.1.3 3D生物球之比較 25 4.2 人工廢水試驗 26 4.2.1 人工廢水馴養試驗 26 4.2.2 人工廢水馴養之循環伏安法 30 4.2.3 人工廢水處理效率 32 4.3 生活污水試驗 38 4.3.1 生活污水處理效率 38 4.3.2 3D生物球生長狀況 39 4.4 有機負荷率對廢水處理之影響 45 第五章 結論與建議 46 5.1 結論 46 5.2 建議 47 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 厭氧醱酵 | zh_TW |
| dc.subject | 生物載體 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 生活污水 | zh_TW |
| dc.subject | anaerobic digestion | en |
| dc.subject | domestic sewage | en |
| dc.subject | 3-D printing | en |
| dc.subject | bio-carrier | en |
| dc.subject | methane | en |
| dc.title | 應用3D列印製作固定化微生物處理生活污水 | zh_TW |
| dc.title | Treatment of Domestic Sewage by Using 3D Printing Anaerobic Bio-carriers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇忠楨(Jung-Jeng Su),李允中(Yeun-Chung Lee) | |
| dc.subject.keyword | 厭氧醱酵,生活污水,3D列印,生物載體,甲烷, | zh_TW |
| dc.subject.keyword | anaerobic digestion,domestic sewage,3-D printing,bio-carrier,methane, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201800123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
