請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69879
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林彥蓉 | |
dc.contributor.author | Shu-Meng Kuo | en |
dc.contributor.author | 郭舒孟 | zh_TW |
dc.date.accessioned | 2021-06-17T03:32:08Z | - |
dc.date.available | 2023-03-01 | |
dc.date.copyright | 2018-03-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-14 | |
dc.identifier.citation | Afzal M, Kawase M, Nakayama H, & Okuno K (1996) Variation in electrophoregrams of total seed protein and Wx protein in foxtail millet: ASHS Press, Alexandria, VA.
Annor GA, Marcone M, Bertoft E, & Seetharaman K (2014) Physical and Molecular Characterization of Millet Starches. Cereal Chem, 91(3), 286-292. Austin D (2006) Foxtail millets (Setaria: Poaceae): abandoned food in two hemispheres. Econ Bot, 60 143–158. Ayala M, Alvarez JB, Yamamori M, & Guzmán C (2015) Molecular characterization of waxy alleles in three subspecies of hexaploid wheat and identification of two novel Wx-B1 alleles. Theor Appl Genet, 128(12), 2427-2435. Ball SG & Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol, 54, 207-233. Baltensperger D & Cai YZ (2004) MILLET | Minor A2 - Wrigley, Colin Encyclopedia of Grain Science (pp. 261-268). Oxford: Elsevier. Baltensperger DD (2002) Progress with proso, pearl and other millets. In J Janick & A Whipkey (Eds.), Trends in new crops and new uses. Alexandria, VA.: ASHS Press. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, & Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol, 30(6), 555-561. Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, & Guiltinan MJ (2001) Identification of mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol, 125(3), 1396. Borén M, Larsson H, Falk A, & Jansson C (2004) The barley starch granule proteome-internalized granule polypeptides of the mature endosperm. Plant Sci, 166(3), 617-626. Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, & Van Eck J (2010) Setaria viridis: A model for C4 photosynthesis. Plant Cell, 22(8), 2537-2544. Buléon A, Colonna P, Planchot V, & Ball S (1998) Starch granules: structure and biosynthesis. Int. J. Biol. Macromol, 23(2), 85-112. Cai XL, Wang ZY, Xing YY, Zhang JL, & Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J, 14(4), 459-465. Cao H, Imparl-Radosevich J, Guan H, Keeling PL, James MG, & Myers AM (1999) Identification of the soluble starch synthase activities of maize endosperm. Plant Physiol, 120(1), 205-216. Chang SB, CL Huang (2007) 淺談台灣原住民小米文化. National Museum of Natural Science. News: Vol. 232, 4th Edition. Chrungoo NK, Devadasan N, Kreft I, & Gregori M (2013) Identification and characterization of granule bound starch synthase (GBSS-I) from common buckwheat (Fagopyrum esculentum Moench). J Plant Biochem Biotechnol, 22(3), 269-276. Crawford G (1992) The transitions to agriculture in Japan. Madison: Prehistory Press. Coultate TP (2002) Food: The Chemistry of Its Components (4th ed.). Royal Society of Chemistry (Great Britain). Customs Administration, Ministry of Finance, Taiwan. (2016) Trade Statistics Search. Available at: https://portal.sw.nat.gov.tw/APGA/GA01 [accessed January 5, 2018] Denyer K, Dunlap F, Thorbjornsen T, Keeling P, & Smith A (1996) The major form of ADP-Glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol, 112, 779-785. Denyer K, Sidebottom C, Hylton CM, & Smith AM (1993) Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J, 4(1), 191-198. Deschamps P, Haferkamp I, d’Hulst C, Neuhaus HE, & Ball SG (2008) The relocation of starch metabolism to chloroplasts: when, why and how. Trends in Plant Science, 13(11), 574-582. Diao X & Jia G (2016) Origin and domestication of foxtail millet. In A Doust & X Diao (Eds.), Genetics and Genomics of Setaria (pp. 61-72): Springer International Publishing. Domon E, Saito A, & Takeda K (2002) Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst, 77(5), 351-359. Doust AN, Kellogg EA, Devos KM, & Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol. 149(1), 137. Edwards A, Marshall J, Sidebottom C, Visser RGF, Smith AM, & Martin C (1995) Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J, 8(2), 283-294. Edwards A, Vincken JP, Suurs LCJM, Visser RGF, Zeeman S, Smith A, & Martin C (2002) Discrete forms of amylose are synthesized by isoforms of GBSSI in pea. Plant Cell, 14(8), 1767. Food and Agricultural Organization (FAO) and International Crops Research Institute in Semi-Arid Tropics (ICRISAT) (1996) The World Sorghum Economies: Facts, Trends and Outlook. FAO, Rome, Italy and ICRISAT, Andhra Pradesh, India. Food and Agricultural Organization [FAO] (2016). Available at: http://www.fao.org/faostat/en/#data/QC/visualize [accessed January 5, 2018]. Frank K & Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics, 24(19):2172-2176. Fu FF & Xue HW (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol, 154(2), 927-938. Fujita N (2014) Starch biosynthesis in rice endosperm. AGri-Bioscience Monographs, 4(1), 1-18. Fujita N & Taira T (1998) A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.). Planta, 207(1), 125-132. Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, & Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol, 140(3), 1070-1084. Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, & Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol, 144(4), 2009-2023. Fukunaga K, Kawase M, & Kato K (2002) Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Genet Genomics, 268(2), 214-222. Grimaud F, Rogniaux H, James MG, Myers AM, & Planchot V (2008) Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J Exp Bot, 59(12), 3395-3406. Hachiken T, Masunaga Y, Ishii Y, Ohta T, Ichitani K, & Fukunaga K (2012) Deletion commonly found in Waxy gene of Japanese and Korean cultivars of Job’s tears (Coix lacryma-jobi L.). Mol Breeding, 30, 1747–1756. Hachiken T, Sato K, Hasegawa T, Ichitani K, Kawase M, & Fukunaga K (2013) Geographic distribution of Waxy gene SNPs and indels in foxtail millet, Setaria italica (L.) P. Beauv. Genet Resour Crop Evol, 60(4), 1559-1570. Hanashiro I & Takeda Y (1998) Examination of number-average degree of polymerization and molar-based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydr Res, 306(3), 421-426. Hirano HY & Sano Y (1991) Molecular Characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol, 32(7), 989-997. Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, & Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome, 54(6), 498-506. Hirochika H, Miyao A, Yamazaki M, Takeda S, Abe K, Hirochika R, Agrawal GK, Watanabe T, Sugimoto K, Sasaki T, Murata K, Tanaka K, Onosato K, Miyazaki A, Yamashita Y, & Kojima N. (2001) Retrotransposons of rice as a tool for the functional analysis of genes. In GS Khush, DS Brar, & B Hardy (Eds.), Rice Genetics IV (pp. 279-292): Int. Rice Res. Inst. Hirose T & Terao T (2004) A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta, 220(1), 9-16. Hsieh, XL (1989) Studies of waxy gene expression in sorghum endosperm. (Master Thesis), National Taiwna University, Taipei, Taiwan. Hu B, Jin J, Guo AY, Zhang H, Luo J, & Gao G (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8):1296-1297. Hubbard FT (1915) A taxonomic study of Setaria italica and its immediate allies. Am J Bot, 2(4), 169-198. Hunt HV, Vander Linden M, Liu X, Motuzaite-Matuzeviciute G, Colledge S, & Jones MK (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobot, 17(Suppl 1), 5-18. Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, & Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J, 15(1), 133-138. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, & Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 45, 957. Jia G, Liu X, Schnable JC, Niu Z, Wang C, Li Y, Wang S, Wang S, Liu J, Guo E, Zhi H, & Diao X (2015) Microsatellite variations of elite Setaria varieties released during last six decades in China. PLoS ONE, 10(5), e0125688. Jones M (2004) Between fertile crescents: minor grain crops and agricultural origins. : Cambridge: McDonald Institute for Archaeological Research. Kawase M, Fukunaga K, & Kato K (2005) Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol Genet Genomics, 274(2), 131-140. Kawase M & Sakamoto S (1987) Geographical distribution of landrace groups classified by hybrid pollen sterility in foxtail millet, Setaria italica (L.) P. Beauv. Jpn J Breed, 37(1), 1-9. Kellogg EA (2016) Evolution of Setaria. In A Doust & X Diao (Eds.), Genetics and Genomics of Setaria (pp. 3-27): Springer International Publishing. Kihara H & Kishimoto E (1942) Bastarde zwischen Setaria italica und S. viridis. Bot Mag, 60, 63-67. Kuo WJ (2005) Seeds and Viewpoints. Available at: http://seed.agron.ntu.edu.tw/ [accessed December 15, 2017] Kuriki T, Stewart DC, & Preiss J (1997) Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties. J Biol Chem, 272, 28999-29004. Lü H, Li Y, Zhang J, Yang X, Ye M, Li Q, Wang C, & Wu N (2014) Component and simulation of the 4,000-year-old noodles excavated from the archaeological site of Lajia in Qinghai, China. Chin Sci Bull, 59(35), 5136-5152. Lata C & Prasad M (2013) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed, 132(5), 496-499. Lee G (2011) The transition from foraging to farming in prehistoric Korea. Current Anthropology, 52(S4), S307-S329. Lee S, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, & Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol, 65(4), 531-546. Li HW, Li CH, & Pao WK (1945) Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) beauv., and the green foxtail millet, S. viridis L. J Am Soc Agron, 37(1), 32-54. Li W, Zhi H, Wang YF, Li HQ, & Diao XM (2012) Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. J Integr Agric, 11(4), 556-566. Li Y, Jia J, Wang Y, & Wu S (1998) Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol, 45(3), 279-285. Lin ZL (1996) Biochemical and genetic analysis of an EMS-induced waxy mutant of Sorghum bicolor (L.) moench. (Doctoral Thesis), National Taiwna University, Taipei, Taiwan. Liu L, Ma X, Liu S, Zhu C, Jiang L, Wang Y, Shen Y, Ren Y, Dong H, Chen L, Liu X, Zhao Z, Zhai H, & Wan J (2009) Identification and characterization of a novel Waxy allele from Yunnan rice landrace. Plant Mol Biol, 71, 609-626 Lu H, Yang X, Ye M, Liu KB, Xia Z, Ren X, Cai L, Wu N, & Liu TS (2005) Millet noodles in Late Neolithic China. Nature, 437, 967. Lu H, Zhang J, Liu KB, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, & Li Q (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. PNAS, 106(18), 7367-7372. Lu Y, Zhao G, Li Y, Fan J, Ding G, Zhao J, Ni X, Xu Y, & Wang W (2013) Identification of two novel waxy alleles and development of their molecular markers in sorghum. Genome, 56(5), 283-288. Luo J, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo VM, Jr., Tanner GJ, Colgrave ML, Upadhyaya NM, Tetlow IJ, Emes MJ, Millar A, Jobling SA, Morell MK, & Li Z (2015) The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theor Appl Genet, 128(7), 1407-1419. Marillonnet S & Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell, 9(6), 967. McIntyre CL, Drenth J, Gonzalez N, Henzell RG, & Jordan DR (2008) Molecular characterization of the waxy locus in sorghum. Genome, 51(7), 524-533. Mikami I, Aikawa M, Hirano HY, & Sano Y (1999) Altered tissue-specific expression at the Wx gene of opaque mutants in rice. Euphytica, 105, 91-97. Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, & Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet, 116, 979-989. Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, & Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics, 28(4), 333-356. Mu-Forster C, Huang R, Powers JR, Harriman RW, Knight M, Singletary GW, Keeling PL, & Wasserman BP (1996) Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase I and starch branching enzyme II. Plant Physiol, 111(3), 821-829. Murray MG & Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8(19), 4321-4325. Myers AM, Morell MK, James MG, & Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 122(4), 989-998. Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, & Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 58(2), 213-227. Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, & Nagamine T (2002) The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch/Stärke, 54(3-4), 117-131. Nakayama H, Afzal M, & Okuno K (1998) Intraspecific differentiation and geographical distribution of Wx alleles for low amylose content in endosperm of foxtail millet, Setaria italica (L.) Beauv. Euphytica, 102(3), 289-293. Nishi A, Nakamura Y, Tanaka N, & Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol, 127(2), 459-472. Ohdan T, Francisco JPB, Sawada T, Hirose T, Terao T, Satoh H, & Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 56(422), 3229-3244. Olsen KM & Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics, 162(2), 941. Okuyama Y, Sugawara S, Endo T (1989) Pure line selection of Waxy-type Hatomugi (Job’s tears). Tohoku Agric Res, 42,153-154 (in Japanese). Okagaki RJ & Wessler SR (1988) Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics, 120(4), 1137-43. Pérez S & Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Stärke, 62(8), 389-420. Pandey MK, Rani NS, Madhav MS, Sundaram RM, Varaprasad GS, Sivaranjani AK, Bohra A, Kumar GR, & Kumar A (2012) Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv, 30(6), 1697-1706. Pedersen JF, Bean SR, Funnell DL, & Graybosch RA (2004) Rapid iodine staining techniques for identifying the waxy phenotype in sorghum grain and waxy genotype in sorghum pollen. Crop Sci, 44:764-767 Pedersen JF, Bean SR, Graybosch RA, Park SH, & Tilley M (2005) Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase. Euphytica, 144(1-2), 151-156. Peng M, Gao M, Båga M, Hucl P, & Chibbar RN (2000) Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol, 124(1), 265-272. Rahman S, Kosar-Hashemi B, Samuel MS, Hill A, Abbott DC, Skerritt JH, Preiss J, Appels R, & Morrell MK (1995) The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 22, 793-803. Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, & Morell MK (2001) Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat genome donor Aegilops tauschii. Plant Physiol, 125(3), 1314-1324. Ramanathan MK & Gopalan C (1957) Effect of different cereals on the blood sugar levels. Indian J Med Res, 45, 255-262. Ritte G, Eckermann N, Haebel S, Lorberth R, & Steup M (2000) Compartmentation of the starch-related R1 protein in higher plants. Starch/Stärke, 52, 145-149. Rominger J (1962) Taxonomy of Setaria (Gramineae) in North America (Vol. 29): Illinois biological monographs. Saito M, Konda M, Vrinten P, Nakamura K, & Nakamura T (2004) Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor Appl Genet, 108(7), 1205-1211. Sakamoto S (1996) Glutinous-endosperm starch food culture specific to Eastern and Southeastern Asia. In RF Ellen & K Fukui (Eds.), Redefining Nature: Ecology, Culture, and Domestication (pp. 215-231): Berg. Saleh ASM, Zhang Q, Chen J, & Shen Q (2013) Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281-295. Sato H, Suzuki Y, Sakai M, & Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed Sci, 52, 131-135. Sattler SE, Singh J, Haas EJ, Guo L, Sarath G, & Pedersen JF (2009) Two distinct waxy alleles impact the granule-bound starch synthase in sorghum. Mol Breed, 24(4), 349-359. Shobana S, Sreerama YN, & Malleshi NG (2009) Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem, 115(4), 1268-1273. Smith A, Denyer K, & Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol, 48, 67-87. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, & Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol, 53(2), 117-137. Takahashi N & Hoshino T (1934) Natural crossing in Setaria italica (Beauv.). Proc Crop Sci Soc Jpn, 6, 3-19. Takeda Y, Hizukuri S, & Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res, 168(1), 79-88. Tetlow IJ, Morell MK, & Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 55(406), 2131-2145. Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, & Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet, 83(8), 940-946. Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, Toyooka K, Sato M, Ai Y, Jane JL, Nakamura Y, & Fujita N (2016) Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol, 170(3), 1255-1270. Tsang CH, Li KT, Hsu TF, Tsai YC, Fang PH, & Hsing YIC (2017) Broomcorn and foxtail millet were cultivated in Taiwan about 5000 years ago. Botl Stud, 58(1), 3. Umemoto T & Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol, 32, 763-768.. United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. Utsumi Y, Utsumi C, Sawada T, Fujita N, & Nakamura Y (2011) Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol, 156(1), 61-77. Van Eck J & Swartwood K (2015) Setaria viridis. In K Wang (Ed.), Agrobacterium Protocols: Volume 1 (pp. 57-67). New York, NY: Springer New York. Van K, Onoda S, Kim MY, Kim KD, & Lee SH (2008) Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Mol Genet Genomics, 279(3), 255-266. Varagona MJ, Purugganan M, & Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell, 4(7), 811. Vinoth A & Ravindhran R (2017). Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci, 8, 29. Vrinten P, Nakamura T, & Yamamori M (1999) Molecular characterization of waxy mutations in wheat. Mol Gen Genet, 261, 463-471. Vrinten PL & Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol, 122(1), 255-264. Wang R, Wendel JF, & Dekker JH (1995) Weedy adaptation in Setaria spp. I. Isozyme Analysis of Genetic Diversity and Population Genetic Structure in Setaria viridis. Am J Bot, 82(3), 308-317. Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, & Hong MM (1995) The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. Plant J, 7(4), 613-622. Wankhede DB, Shehnaz A, & Raghavendra Rao MR (1979) Preparation and physicochemical properties of starches and their fractions from finger millet (Eleusine coracana) and foxtail millet (Setaria italica). Starch/Stärke, 31(5), 153-159. Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, & Fujita M (2003) Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet, 107(1), 84-88. Yin SY (2018) The agronomic traits and grain physicochemical property of Foxtail millet (Setaria italica) germplasm in Taiwan. (Master Thesis), National Taiwna University, Taipei, Taiwan. Yu G, Olsen KM, & Schaal BA (2011) Association between nonsynonymous mutations of starch synthase IIa and starch quality in rice (Oryza sativa). New Phytol, 189(2), 593-601. Zhang G, Cheng Z, Zhang X, Guo X, Su N, Jiang L, Mao L, & Wan J (2011) Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome, 54(6), 448-459. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, & Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 30, 549-554. Zhang L, Chen H, Luo M, Zhang XW, Deng M, Ma J, Qi PF, Wang JR, Chen GY, Liu YX, Pu ZE, Li W, Lan XJ, Wei YM, Zheng YL, & Jiang QT (2017) Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. Theor Appl Genet, 130(6), 1321-1330. Zhu F (2014) Structure, physicochemical properties, and uses of millet starch. Food Res Int, 64, 200-211. Zohary D & Hopf M (2000) Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley: Oxford University Press. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69879 | - |
dc.description.abstract | 小米 (Setaria italica (L.) P. Beauv.) 為多種粟類穀物中全世界栽培第二大宗者,且因其耐旱、耐貧瘠、對於環境之適應力強而廣泛遍布於世界各地,尤其為乾旱與半乾旱地區的重要作物。小米在臺灣的栽種歷史可以追溯至大約五千年前,對原住民而言是最古老的栽培作物,歷史悠久的主食,營養成分高,澱粉含量大約75%,其中,糯小米具有較高的黏滯性和良好的適口性,製成品有甜香味,應用於釀酒、炊飯、煮粥、製餅等。穀粒胚乳中澱粉粒的合成是由一系列酵素參與形成之複雜網絡,但是相較於主要作物,例如水稻、玉米、小麥等,對於小米的澱粉特性以及其生合成的相關研究並不甚多。本研究利用123個臺灣小米收集系,分析其糯性基因型,澱粉合成相關基因 (SSRGs) 之表現量,以及Waxy基因所編碼的澱粉顆粒結合性澱粉合成酶 (GBSSI) 之功能性研究。以不同跳躍子 (transposable element) 插入Waxy為依據將Waxy歸類為四個對偶基因型,type I 為高直鏈澱粉含量的野生型,type III與IX屬於低直鏈澱粉含量,而大多數收集系屬於糯性外表型的type IV。Type III,IX與IV的 Wx 之mRNA含量顯著低於type I,但這些對偶基因型的轉錄片段並未出現異常剪切,長度皆與野生型相同。Type I的GBSSI蛋白質含量顯著高於其他對偶基因型,這樣的差異源自於type III,IX與IV因為跳躍子插入基因中而導致mRNA含量下降,進而造成直鏈澱粉含量降低。Wx對偶基因型在臺灣的地理分布似乎與原住民對於不同小米特性的偏愛所造成的選拔息息相關,尤其在蘭嶼地區展現了地區獨特性。另外,依據水稻中澱粉生合成的路徑,針對小米之澱粉生合成相關基因(SSRGs)包括AGPase large subunit1 (AGPL1)、starch synthase I (SSI)、SSIIa、SSIIIa、branching enzyme2 (BE2)、與pullulanase1 (PUL1),在穀粒充實期間中挑選開花後 (DAF) 5、10、15與22天進行表現量分析。澱粉合成相關基因的表現量在挑選的收集系中並沒有明顯的差異,不過SSI、SSIIa與SSIIIa 的表現量在後兩階段超越了GBSSI,其中SSIIa為澱粉合成酶中表現量最高者,不過其表現模式在type III有些不同,且PUL1在type IX也有些微不同,表示這些收集系在特定的SSRGs可能攜帶著不同的對偶基因。此研究針對小米中調控澱粉生合成之主要基因進行了初步的探討,未來將結果與澱粉理化特性相互對應後能進一步探討收集系中其他澱粉合成相關基因之對偶基因組成,對偶基因之多型性可應用於分子標誌輔助選拔,以選育優良食味或加工品質且農藝性狀佳的臺灣地方種小米,使小米不僅具有地方特色亦能多元應用發展。 | zh_TW |
dc.description.abstract | Foxtail millet (Setaria italica (L.) P. Beauv.), the second largest crop among millets, is extensively adapted to diverse environments and remains an important crop in arid and semiarid regions worldwide serving as both cereal foods and forage. In Taiwan, foxtail millet is a traditional crop for indigenous people and its cultivation can date back around 5,000 years ago. However, less information is available about the characteristics and biosynthesis of starch in foxtail millet in comparison with other major cereals such as rice, corn and wheat. In this study, a total of 123 accessions collected within Taiwan were assessed by Wx genotypes, functional studies of GBSSI, and gene expressions of selected SSRGs. Four Wx genotypes were identified: I (non-waxy wild type), III (low AC), IV (waxy), and IX (low AC), while the majority of accessions belonged to the waxy type. The expression level of Wx was significantly lower in type III, IX and IV, whereas the length of their transcripts were the same as wildtype without inaccurate splicing. The GBSSI content of type I was significantly higher than other three genotypes, suggesting the variance was caused by low mRNA level in other three types due to reduced splicing efficiency and then resulted in lower AC. The geographic distribution of Wx genotypes seemed to be associated with the preferences for specific waxy phenotypes under human selection, especially in the Orchid Island (Lanyu). According to the starch biosynthesis pathway in rice, expressions of selected orthologous of foxtail millet SSRGs were estimated during grain filling stages at 5, 10, 15, and 22 DAF (days after flowering), including AGPL1, SSI, SSIIa, SSIIIa, BE2, and PUL1. There was no significant variation in SSRGs among these accessions. Expression levels of SSI, SSIIa, and SSIIIa mainly surpassed GBSSI in the last two stages; besides, the level of SSIIIa was the highest among SSs. However, the expression pattern of SSIIIa was slightly different in type III and so was PUL1 in type IX, which indicated the possibility that these types might carry different alleles of specific SSRGs. The relationship among SSRGs, structure of grain starch, and its physicochemical properties will be further studied. The study provided preliminary information on major genes controlling starch biosynthesis in foxtail millet, which can be applied to breeding programs for elite eating and cooking quality and various utilizations of foxtail millet in the food industry. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:32:08Z (GMT). No. of bitstreams: 1 ntu-107-R04621108-1.pdf: 3899822 bytes, checksum: 592d91fdb31416499ae226512bf10755 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Abstract I
Abstract (in Chinese) 中文摘要 III Content V Table Content IX Figure Content X Preface 1 Chapter 1. Literature Review 5 1.1. Millets 5 1.2. Domestication of foxtail millet 8 1.3. Setaria as a model system for C4 photosynthesis 10 1.4. Starch biosynthesis in plants 11 1.5. Starch synthesis-related genes and enzymes 13 1.6. Granule-Bound Starch Synthase I 16 Chapter 2. Materials and Methods 21 2.1. Plant materials 21 2.2. Identification of GBSSI alleles 21 2.3. RNA extraction and quantitative real-time PCR (qRT-PCR) 23 2.4. Gene expression pattern analysis 24 2.5. Protein isolation and protein gel blot analysis 25 2.6. Phylogenetic analysis 27 Chapter 3. Results 28 3.1. Identification of Waxy genotypes in Taiwan foxtail millet germplasm…… 28 3.2. Genetic analysis of Wx genotypes 34 3.3. Geographic distribution of Wx genotypes of foxtail millet in Taiwan and the world … 39 3.4. Analyses of gene expression and protein contents of GBSSI in developing seeds 43 3.5. Analysis of mRNA expression of selected starch synthesis related genes in immature grains 47 Chapter 4. Discussion 53 4.1. Molecular variation of the Wx and the distribution of foxtail millet 53 4.2. Analysis of granule-associated proteins of foxtail millet 56 4.3. Relationships of foxtail millet to other crops based on GBSSI protein sequence… 59 4.4. Expression of starch synthesizing related genes in foxtail millet 60 4.5. Expression pattern of GBSSI 63 4.6. Perspective 65 Chapter 5. References 67 Chapter 6. Supplementary data 78 Table S1. Known internal starch granule-associated protein. 78 Table S2. The list of foxtail millet accessions studied by accession, PI number, origin, PCR analysis and the apparent amylose content. 79 Table S3. Primers used to determine Wx genotypes. 83 Table S4. Primers used to sequence GBSSI of foxtail millet. 84 Table S5. Target genes and primers designed for analysis of expression profile of starch synthesis-related genes. 85 Fig. S1. Gene expression of starch synthesis-related genes at different seed developing stages based on Wx genotypes. 88 Chapter 7. Appendix 89 Appendix 1. Phylogenetic position of foxtail millet and green foxtail. 89 Appendix 2. Amylopectin biosynthesis and the structure of starch granule. 90 Appendix 3. Starch biosynthesis 91 Appendix 4. Model for the evolution of the Wx in foxtail millet. 92 Appendix 5. Apparent amylose content (AAC) assay. 93 | |
dc.language.iso | en | |
dc.title | 針對臺灣小米種原探討影響澱粉生合成之主效基因 | zh_TW |
dc.title | Exploring Major Genes Conferring Starch Biosynthesis of Foxtail Millet (Setaria italica) Germplasm in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邢禹依,吳永培,蔡元卿 | |
dc.subject.keyword | 小米,澱粉生合成,澱粉顆粒結合性澱粉合成? (GBSSI), | zh_TW |
dc.subject.keyword | foxtail millet,starch biosynthesis,granule-bound starch synthase I (GBSSI), | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201800565 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。