請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國慶(Kuo-Ching Chen) | |
| dc.contributor.author | Jia-Wei Lin | en |
| dc.contributor.author | 林家緯 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:31:45Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | P. Ladpli, F. Kopsaftopoulos, F. K. Chang. (2018). Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators. Journal of Power Sources. 384, 342-354. K. Elhaj. (2016). Subsurface delineation and cavity investigation using geophysical method in Gua musang, Kelantan, Malaysia. United Arab Emirates University. The Degree of Master of Science. J. Liu, Q. Duan, L. Feng, M. Ma, J. Sun, Q. Wang. (2020). Capacity fading and thermal stability of LiNixCoyMnzO2/graphite battery after overcharging. Journal of Power Sources. 29, 101397. X. Lai, Y. Zheng, L. Zhou, W. Gao. (2018). Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta. 278, 245-254. B. Sood, M. Osterman, M. Pecht. Health monitoring of lithium-ion batteries. (2013). IEEE Symposium on product compliance engineering(ISPCE). 1–6. Y. Wu, Y. Wang, W. K. C. Yung and M. Pecht. (2019). Ultrasonic Health Monitoring of Lithium-Ion Batteries. Electronics. 8, 751. A. G. Hsieh, S. Bhadra, B. J. Hertzberg, B. Gjeltema, P. J. Gjeltema, A. Goy, J. W. Fleischer and D. A. Steingart. (2015). Electrochemical-acoustic time of flight: In operando correlation of physical dynamics with battery charge and health. Energy Environmental Science. 8, 1569–1577. 宋灿, 刘石, 任思源. (2015). 基於超聲波飛行時間的溫度測量系統實驗研究. Journal of Applied Acoustics. 34, 4. L. Gold, T. Bach, W. Virsik, A. Schmitt, J. Müller, T. E. M. Staab, G. Sextl. (2017). Probing lithium-ion batteries' state-of-charge using ultrasonic Transmission-Concept and laboratory testing. Journal of Power Sources. 343, 536-544. G. Davies, K. W. Knehr, B. V. Tassell, T. Hodson, S. Biswas, A. G. Hsieh, and D. A. Steingart. (2017). State of Charge and State of Health Estimation Using Electrochemical Acoustic Time of Flight Analysis. Journal of The Electrochemical Society. 164, A2746-A2755. P. Ladpli, F. Kopsaftopoulos, F. K. Chang. (2018). Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators. Journal of Power Sources. 384. 342–354. W. Waag, C. Fleischer, D. U. Sauer. (2014). Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources. 258. 321–339. X. Tang, Y. Wang, Z. Chen. (2015). A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer. Journal of Power Sources. 296. 23–29. V. H. Duong, H. A. Bastawrous, K. Lim, K. W. See, P. Zhang, S. X. Dou. (2015) Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares. Journal of Power Sources. 296, 215–224. V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, V. R. Subramanian. (2012). Modeling and simulation of lithium-ion batteries from a systems engineering perspective. Journal of The Electrochemical Society. 159, R31–R45. J. Kalawoun, K. Biletska, F. Suard, M. Montaru. (2015). From a novel classification of the battery state of charge estimators toward a conception of an ideal one. Journal of Power Sources. 279 694–706. S. Sepasi, R. Ghorbani, B. Y. Liaw. (2014). A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter. Journal of Power Sources. 245, 337–344. 鄭哲. (2019). 超聲波技術在鋰離子電池表徵中的應用. Energy Storage Science and Technology. 8, 6. 孫鐘, 李全育, 習海波, 邢樹宏, 楊雙羊. (2011). 溫度對超聲波檢測缺陷定位定量的影響. 無損檢測試驗研究. 33, 44. 雷勝軍, 程茂, 陳忠明. (2008). 溫度對超聲波探頭靈敏度的影響. 無損檢測試驗研究. 31, 1. J. B. Robinson, M. Maier, G. Alster, T. Compton, D. J. L. Brett and P. R. Shearing. (2018). Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Royal Society of Chemistry. 21, 6354. H. Y. Choi, I. Lee, J. S. Lee, Y. M. Kim, H. Kim. (2013). A Study on Mechanical Characteristics of Lithium-Polymer Pouch Cell Battery for Electric Vehicle. 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV). 13-115 郭逸仁. (2018). 調控分支電流以延緩並聯鋰離子電池組老化的探討. 國立台灣大學工學院應用力學研究所碩士論文. H. Li, Z. Zhou. (2019). Numerical simulation and experimental study of fluid-solid coupling-based air-coupled ultrasonic detection of stomata defect of lithium-ion battery. Sensors. 19, 2391. P. Ladpli, R. Nardari, F. Kopsaftopoulos, Y. Wang, F. K. Chang. (2016). Design of multifunctional structural batteries with health monitoring capabilities. European Workshop On Structural Health Monitoring. 8, 5-8. P. Ladpli, F. Kopsaftopoulos, R. Nardari, F. K. Chang. (2017). Battery charge and health state monitoring via ultrasonic guided-wave-based methods using built-in piezoelectric transducers. Smart Materials and Nondestructive Evaluation for Energy Systems. 25–29, 1017108. C. Hendricks, N. Williard, S. Mathew, M. Pecht. (2015). A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. Journal of Power Sources. 297, 113-120. W. Mu, X. Liu, Z. Wen, L. Liu. (2019). Numerical simulation of the factors affecting the growth of lithium dendrites. Journal of Power Sources. 26, 100921. L. Huang, Z. Zhang, Z. Wang, L. Zhang, X. Zhu, D. D. Dorrell. (2019). Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns. Journal of Energy Storage. 25, 100811. L. Wu and J. Zhanga. (2015). Ab initio study of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process. Journal of Applied Physics. 118, 225101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69871 | - |
| dc.description.abstract | 鋰離子電池廣泛的應用於電子3C產品中,並可為電子商品供電,然而電池隨著使用時間及存放時間越久,其電池會逐漸老化,若電池充放電超過截止電壓,電池亦有過充或過放的問題,易造成電池表面溫度過高,造成電池熱失控[29],基於以上的原因,對電池健康程度的監控及電量監控就非常重要。 電池在充放電過程及循環過程中,由文獻[5][24]中提及在電池中的電極層間,電解液分佈不均、氣體生成、裂縫產生等。文獻[11][26][27]研究超聲波檢測中波傳遞的時間隨著SOC及SOH而有所變化,文獻[9]將針對一個循環的充放電過程,進行超聲波在不同SOC的檢測,並發展出一套超聲波訊號和SOC間的關係。 本研究將透過同一循環下,不同SOC的超聲波檢測。不同SOH下,其超聲波訊號隨著SOC的變化情形。不同溫度下,全新電池的超聲波檢測。藉由這三者間的關係,發展出一套完整的超聲波檢測模型,透過電池表面溫度、超聲波檢測,可得知不同溫度下,電池SOH及SOC。 | zh_TW |
| dc.description.abstract | Lithium-ion batteries are widely used in electronic products as the power supply.However, degradation of battery will be happened when the battery is used over the long period of normal cycling or storage.The battery will be overcharged or overdischarged when the battery is charged or discharged over cut-off voltage.It can cause high temperature on the surface of the battery and thermal runaway.Based on the above reasons, health monitoring of Lithium-ion batteries and state of charge monitoring are very important. Literature[5][24] have reported eletrolyte nonuniformity,gas generation,cracks within the electrode layer of batteries during the battery is charged or discharged and cycled.Literature[11][26][27] studied ultrasonic inspection associated with the change of the state of charge and state of health. Literature[9] developed a linear model between the ultrasonic inspection and SOC over one cycle. This study will use ultrasonic inspection associated with the change of SOC over one cycle and different cycle,and different temperature.By the relationship of three,we will develop complete model of ultrasonic inspection.By temperature on the surface of the battery, ultrasonic inspection,we can aquire SOC and SOH of the battery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:31:45Z (GMT). No. of bitstreams: 1 U0001-1708202023004000.pdf: 5080166 bytes, checksum: e212657e57101a124a4ae0e57f1b5697 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 圖目錄 vi 表目錄 x 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文目的及架構 2 第2章 鋰離子電池名詞介紹 3 2.1 電池名詞介紹 3 2.1.1 絕對荷電狀態(Absolute State of Charge,ASOC): 3 2.1.2 相對荷電狀態(Relative State of Charge,RSOC): 3 2.1.3 電池健康狀態(State of Health,SOH): 3 2.1.4 電容量(Capacity): 4 2.1.5 C-Rate: 5 2.1.6 截止電壓: 5 2.1.7 開路電壓(OCV): 6 2.1.8 固體電介質介面膜(Solide Electrolyte Interphase,SEI膜): 7 2.1.9 循環老化(cycle aging): 7 2.1.10 儲存老化(calender aging): 8 2.1.11 鋰離子電池充放電條件: 8 2.2 鋰離子電池充放電機制 8 2.3 鋰離子電池常用材料 9 2.3.1 正極材料 9 2.3.2 負極材料 10 第3章 超聲波介紹與理論 12 3.1 超聲波簡介 12 3.2 產生超聲波之原理 16 3.3 壓電材料 18 3.4 波的種類 20 第4章 文獻回顧 22 4.1 超聲波檢測電池SOC及SOH之相關研究 22 4.2 超聲波技術在鋰離子電池的應用 38 4.3 溫度對超聲波探頭及訊號的影響 39 4.4 超聲波對鋰離子袋狀電池不同位置的檢測 41 第5章 超聲波檢測鋰離子袋狀電池ASOC和SOH 42 5.1 實驗儀器介紹 42 5.2 實驗架設 45 5.3 實驗結果與討論 45 5.3.1 超聲波對電池不同位置的檢測 45 5.3.2 耦合劑的影響 47 5.3.3 A-Scan波形圖 49 5.3.4 不同電流經超聲波檢測的TOF變化情形 49 5.3.5 TOF偏差分析 53 5.3.6 鋰離子袋狀電池在不同溫度進行超聲波檢測 54 第6章 超聲波檢測電池ASOC及SOH模型建立 58 6.1 即時與非即時在不同ASOC下TOF的偏差量比較 58 6.2 超聲波即時模型建立 60 6.2.1 全新電池的ASOC估測 60 6.2.2 超聲波檢測循環老化電池的SOH及ASOC 61 6.3 實驗與模型偏差分析 70 6.4 模型優缺點比較 72 6.5 模數隨電池充放電的變化情形 72 第7章 結論與未來展望 75 7.1 實驗結論 75 7.1.1 耦合劑對超聲波的影響 75 7.1.2 充放電電流大小對超聲波檢測的影響 75 7.1.3 超聲波檢測電池不同位置的TOF 76 7.1.4 不同溫度的超聲波檢測 76 7.1.5 超聲波檢測模型建立 76 7.1.6 電池等效模數初步探討 76 7.2 未來展望 77 7.2.1 電池材料模數變化 77 7.2.2 不同正極材料的超聲波檢測 77 7.2.3 儲存老化的超聲波檢測 77 7.2.4 機器學習結合超聲波檢測 77 7.3 本論文與超聲波檢測論文的差異 77 7.3.1 不同溫度下的檢測 77 7.3.2 不同電流檢測的比較 78 7.3.3 將超聲波文獻進行結合 78 7.4 論文貢獻 78 第8章 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鋰離子袋狀電池 | zh_TW |
| dc.subject | 超聲波檢測 | zh_TW |
| dc.subject | 循環老化 | zh_TW |
| dc.subject | SOC | zh_TW |
| dc.subject | SOH | zh_TW |
| dc.subject | SOH | en |
| dc.subject | Lithium-ion pouch cell | en |
| dc.subject | ultrasonic inspection | en |
| dc.subject | cycle aging | en |
| dc.subject | SOC | en |
| dc.title | 非破壞性檢測鋰離子電池健康及荷電狀態 | zh_TW |
| dc.title | Non-destructive detection of lithium-ion battery SOH and SOC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭志禹(Chih-Yu Kuo),周鼎贏(Dean Chou),林祺皓(Chi-Hao Lin),林揚善(YANG-SHAN LIN) | |
| dc.subject.keyword | 鋰離子袋狀電池,超聲波檢測,循環老化,SOC,SOH, | zh_TW |
| dc.subject.keyword | Lithium-ion pouch cell,ultrasonic inspection,cycle aging,SOC,SOH, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202003882 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202023004000.pdf 未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
