請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69863
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平(Chung-Ping Chen) | |
dc.contributor.author | Po-Hung Chen | en |
dc.contributor.author | 陳柏宏 | zh_TW |
dc.date.accessioned | 2021-06-17T03:31:24Z | - |
dc.date.available | 2021-10-03 | |
dc.date.copyright | 2018-10-03 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-20 | |
dc.identifier.citation | [1] Peter A. Stricker, 'Aircraft Hydraulic System Design', https://zh.scribd.com/presentation/240627951/Aircraft-Hydraulic-System-Design.
[2] C. Kleijn, 'Introduction to Hardware-in-the-Loop Simulation', ControlLab. [3] Goossens, Gert, 'Fast and Accurate System-Level Modeling for Heterogeneous Multi-Processor SoCs', www.retarget.com, last checked: 13.08.2010. [4] Claudio Melchiorri, 'Trajectory Planning for Robot Manipulators', Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Universit`a di Bologna. [5] Biagiotti, Luigi, Melchiorri, Claudio, 'Trajectory Planning for Automatic Machines and Robots', Springer, 2008. [6] D.McCloy, H.R.MARtin, 'Contorl of Fluid Power Analysis and Design', Ellis Horwood limited, 1980. [7] E.C.Fitch, I.T.Hong, 'Hydraulic Component Design and Selection', BarDyne, Incorporated, 2000, pp 149-156. [8] Costa Branco, P. J., Dente, J. A., 'The Application of Fuzzy Logic in Automatic Modelling Electromechanical Systems', Fuzzy Sets and Systems, 1998, Vol. 95, No. 3,p. 273–293. [9] Ardeshir Guran, Friedrich Pfeiffer, Karl Popp, 'Dynamics with Friction Modeling, Analysis and Experiment Part Ⅱ', World Scientific, 2001. [10] P. Athanasatos, Th. Costopoulos, 'The effect of internal leakage of a 4/3 way valve on the response of industrial hydraulic systems', School of Mechanical Engineering of N.T.U.A., 2008. [11] Merrit, H. E. 'Hydraulic Control Systems', John Wiley & Sons , New York, 1967. [12] B. Šulc, J.A. Jan. 'Non Linear Modelling and Control of Hydraulic Actuators', Acta PolytechnicaVol.42 No.3/2002, pages 41 – 47, Prague, Czech Republic, 2002. [13] Chen, H. M., J. P. Su, and J. C. Renn, 'A novel sliding mode control of an electro-hydraulic position servo system', IEICE, Vol. E85A, No. 8, pp. 1928–1936, 2002. [14] Mao-Hsiung Chiang, 'The velocity control of an electro-hydraulic displacement-controlled system using adaptive fuzzy controller with self-tuning fuzzy sliding ode compensation', Asian Journal of Control, Vol. 13, No. 4, pp. 492 504, July 2011. [15] Bonchis, A., P. I. Corke, D. C. Rye, and Q. P. Ha, 'Variable structure methods in hydraulic servo systems', Automatica, Vol. 37, pp. 589–595, 2001. [16] Chun-Hsien Yeh, Pei-Yin Chen, Chia-Hao L, Hao-Ting Lin, Yen-Chen Lai, Pei-Hua Chang 'Real-Time Digital Hardware Simulation of the Rodless Pneumatic System,' IEEE Transactions on Circuits and Systems II: Express Briefs, Sep. 2016. [17] Alan Johnson, Andrew N. Hall, Gary McKay, 'Hardware-In-the-Loop Simulation of an Aircraft Brake System', Cessna Aircraft Company. [18] S. Tola, and M. Sengupta, 'Real-time simulation of an induction motor in different reference frames on a fpga platform', 2012 IEEE International Conference on Power Electronics (2012) December 16-19; Bengaluru, India. [19] H. Mekki, A. Mellit, S. A. Kalogirou, A. Messai, and G. Furlan, 'FPGA-based implementation of a real time photovoltaic module simulator', Prog. Photovolt: Res. Appl.18, 115-127 (2010). [20] Y. Li, D. Xu, and B. Wu, 'Real-time simulator for medium voltage drives fed by current source inverter', 2004 35th Annual IEEE Power Electronics Specialists Conference, 3547-3552 (2004) Aachen, Germany. [21] M. H. Chiang, and H. T. Lin, 'The force control of a novel variable rotational speed hydraulic pump-controlled system using adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation', 18th IFAC World Congress, 968-973 (2011) Milano, Italy. [22] M. H. Chiang, 'The velocity control of an electro-hydraulic displacement-controlled system using adaptive fuzzy controller with self-tuning fuzzy sliding mode compensation', Asian Journal of Control 13, 492-504 (2011). [23] M. H. Chiang, 'A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system', Mechatronics 21, 753-761 (2011). [24] G. G. Parma, and V. Dinavahi, 'Real-time digital hardware simulation of power electronics and drives', IEEE Transactions on Power Delivery 22, 1235-1246 (2007). [25] B. M. Hanson, M. C. Levesley, K. Watterson, and P. G. Walker, 'Hardware-in-the-loop-simulation of the cardiovascular system with assist device testing application', Medical Engineering & Physics 29, 367-374 (2007). [26] A. Bittar, 'Central processing unit for an autopilot: description and hardware-in-the-loop simulation', J Intell Robot Syst 70, 557-574 (2013). [27] Jacobi, G, 'Software ist im Auto ein Knackpunkt. VDI Nachrichten', (2003). www.vdi-nachrichten.com/vdi-nachrichten/archiv/vdi-nachrichten.asp [28] O. Ustun; R. N. Tuncay, 'Design, analysis and control of a novel linear actuator', IEEE Transactions on Industry Applications, vol. 42, no. 4, (2006). [29] Johannes Krettek, Daniel Schauten, Frank Hoffmann, Torsten Bertram, ' Evolutionary hardware-in-the-loop optimization of a controller for cascaded hydraulic valves', IEEE/ASME international conference on advanced intelligent mechatronics, 4-7 Sept. 2007. [30] R Ghabcheloo, M Hyvonen, 'Modeling and motion control of an articulated-frame-steering hydraulic mobile machine', Control and Automation, 24-26 June 2009. [31] Christian Köhler, 'Enhancing Embedded Systems Simulation: A Chip-Hardware-in-the-Loop Simulation Framework', Springer, 24th February 2011. [32] Ron T. Ogan, 'Hardware-in-the-Loop Simulation', Springer, May 2015. [33] Thomas Bloor, Bob Leigh, 'The Low-Risk Path to Building Autonomous Car Architectures', QNX and RTI, Oct. 25, 2016. [34] Fei Liu1 , Lu Xiong2, Xiaopeng Wu, 'Design and Experimental Validation for Stability Control of Four-Wheel-Drive Electric Vehicle', ITEC Asia-Pacific 2014. [35] C Luo, J Yao, F Chen, L Li, Q Xu, 'Adaptive Repetitive Control of Hydraulic Load Simulator With RISE Feedback ', IEEE Access, 2017. [36] Mao-Hsiung CHIANG, Lian-Wang Lee and Hsien-Hsush Liu, 'Adaptive Fuzzy Controller with Self-tuning Fuzzy Sliding-Mode Compensation for Position Control of an Electro-Hydraulic Displacement-Controlled System', Journal of Intelligent and Fuzzy Systems, 26 (2014) 815–830. [37] Mao-Hsiung Chiang, Chang-Sheng Chen,and Ching-Sung Wang, 'Intelligent Pitch Control for a 2MW Wind Turbine', International Journal of Fuzzy Systems, Vol. 14, No. 1, pp.89-96 March 2012. [38] Yalcin Efe, 'Dynamic Model of a Hydraulic Servo System for a Manipulator Robot ', Degree project in Electrical Machines and Drives, Stockholm, Sweden XR-EE-E2C 2014:002. [39] Gene Quandt, 'Wind Turbine Trailing-Edge Aerodynamic Brake Design', NREL/TP-441-7389 • UC Category: 1213 • DE96000525. [40] Q. P. Ha, H. Q. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, 'Sliding Mode Control with Fuzzy Tuning for an Electro-Hydraulic Position Servo System', 1998 Second International Conference on Knowledge-Based Intelligent Elecmnic Systems, 21-23 April 1998. [41] B. Šulc, J. A. Jan, 'Non Linear Modelling and Control of Hydraulic Actuators', Acta Polytechnica Vol. 42 No. 3/2002. [42] Dechrit Maneetham , Nitin Afzulpurkar, 'Modeling, simulation and control of high speed nonlinear hydraulic servo system', World Journal of Modelling and Simulation Vol. 6 (2010) No. 1, pp. 27-39. [43] B.J.Patil, V. B. Sondur, 'Mathematical Modeling and Simulation of Direct Acting Pressure Relief Valve with the Effects of Compressibility of Oil Using MATLAB SIMULINK', International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 2 Issue 4 July 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69863 | - |
dc.description.abstract | 在設計複雜大型機械系統的時候,為了達到精準度,模擬速度,以及效率的需求。本論文採用硬體迴路設計得概念(Hardware in the Loop, HIL),實現一個應用於可變排量液壓系統的模組(Hydraulic System Module, HSM)。
首先,為了實現可變排量液壓系統的即時性,提出了一種精確的數學模型,然後將此模型實作於電路上,並在ASIC上實現最後將結果與硬體相比較,驗證此想法的可行性,以得到更多的即時資訊,開發更高動態精準度性能的控制器。 據我們所知,提出的HSM電路是第一個實現於特殊應用積體電路(ASIC),並沒有相關的設計存在於文獻中。 根據量測結果,在ASIC版本從0.2 s改善到1.2μs,改良了166,666倍。而在FPGA-58bits版本從0.2 s改善到155ns,改良了1,920,322倍,平均誤差小於0.01,證明此設計滿足高精準度,以及模擬速度的要求,在使用TSMC 0.18微米CMOS製程實現的可變排量液壓系統模組,晶片面積為0.949 × 0.949 mm2,實際電路面積為 0.566 × 0.566 mm2,在1.8V供應電壓下,量測的頻率為62.4 MHz,每筆資料的處理時間為1,280 ns。 | zh_TW |
dc.description.abstract | In the design of a large, high complexity mechanical system, trade-off among accuracy, simulation speed and efficiency requirements is a challenge. In this work, the hardware in the loop (HIL) is used to implement a Hydraulic System Module (HSM) for a variable displacement hydraulic system.
First of all, in order to achieve the immediacy of variable hydraulic system, an accurate mathematical model is proposed. Then, realize the model on the circuit and implement it on ASIC. Finally, the result is compared with the hardware to verify the feasibility of this idea. Develop controllers with higher dynamic accuracy performance with real-time information. To the best of our knowledge, the proposed HSM is the first application-specific integrated circuit (ASIC) implementation, and no related state-of-the-art ASIC design exists in the literature. A variable displacement hydraulic system is presented. Designed and fabricated in 0.18-μm CMOS technology. Based on the measurement results, the ASIC version was improved from 0.2 s to 1.2 μs, an improvement of 166,666 times. The FPGA 58bits version improved from 0.2 seconds to 155ns, an improvement of 1,920,322 times, with an average error of less than 0.01, proving the design meets high accuracy and simulation speed requirements. Moreover, the chip area is 0.949 × 0.949 mm2, the core area is 0.566 × 0.566 mm2, an operation frequency is 62.4 MHz, propagation delay time 1280 ns and power consumption is 6.26 mW from a 1.8-V supply. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:31:24Z (GMT). No. of bitstreams: 1 ntu-107-R04943140-1.pdf: 3485645 bytes, checksum: fe3cece585c8ac351623a7bc17131c9d (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 II
誌謝 IV 中文摘要 VI ABSTRACT VIII Table of Contents X List of Figure XII List of Table XVI Notation XVII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter 2 Modeling 4 2.1 Hydraulic Drive System 4 2.2 Algorithm 6 2.3 Trajectory Planning 8 2.3.1 Fifth Order Trajectory 9 2.4 Modeling 14 2.4.1 System Supply for Hydraulic Energy 14 2.4.2 Dynamic Equation of the Servo Valve Spool 15 2.4.3 Servo Variable Displacement Plunger Pump 17 2.4.4 System Flow Equation 18 2.4.5 Signal Conversion between Pressure and Flow 19 2.4.6 The Relation between Directional Valve and Flow 20 2.4.7 Signal Conversion Flow to Pressure 24 2.4.8 Dynamic Equation of the Actuator 31 2.4.9 System State Equations 32 Chapter 3 Hardware Implementation 34 3.1 Architecture 34 3.2 Implementation 35 3.3 Notation Defined 36 3.4 Hydraulic Power Supply System 38 3.5 Pressure and Flow Servo Signal Transform 39 3.6 Actuator dynamic equation 40 3.7 I/O Buffer Parameter Module Numerical Constrain 42 3.8 Simulation Result 43 Chapter 4 Measurement 54 4.1 Layout and Pin Description 54 4.2 Set-Up 57 4.3 Operating Range 59 4.4 Measurement Results 62 Chapter 5 Conclusion 65 Reference 66 | |
dc.language.iso | en | |
dc.title | 感應式變排量液壓系統硬體迴路即時模擬矽智財的設計與實現 | zh_TW |
dc.title | Real-Time Digital Hardware Simulation of the Hydraulic System Module | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳培殷(Pei-Yin Chen),林浩庭(Hao-Ting Lin) | |
dc.contributor.oralexamcommittee | 丁建均(Jian-Jiun Ding) | |
dc.subject.keyword | 液壓系統,硬體迴路,特殊應用積體電路,建模, | zh_TW |
dc.subject.keyword | Hydraulic system,HIL,ASIC,modeling,implementation, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201800614 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-21 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。