Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6982
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉子銘(Tzu-Ming Liu)
dc.contributor.authorCheng-Jie Huangen
dc.contributor.author黃成杰zh_TW
dc.date.accessioned2021-05-17T09:23:00Z-
dc.date.available2014-09-03
dc.date.available2021-05-17T09:23:00Z-
dc.date.copyright2012-09-03
dc.date.issued2012
dc.date.submitted2012-08-27
dc.identifier.citationGatenby RA, Gillies RJ, “Why do cancers have high aerobic glycolysis?” Nat Rev Cancer, 4:891–899 (2004).
Matthew G. Vander Heiden, Lewis C. Cantley, Craig B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation” Science. 324(5930): 1029–1033 (2009).
Warburg O, “On the origin of cancer cells.” Science. 123(3191):309–14(1956).
Peggy P. Hsu, David M. Sabatini, “Cancer Cell Metabolism: Warburg and Beyond” Cell. Vol.134:703–707 (2008).
Ahmed A Heikal, “Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies” Biomark Med.Vol.4: 241–263 (2010).
Joseph R. Lakowicz, Henryk Szmacinski, Kazimierz Nowaczyk, Michaell. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH” Biochemistry, Vol. 89, 1271–1275 (1992).
Melissa C. Skala, Kristin M. Riching, Annette Gendron-Fitzpatrick, Jens Eickhoff, Kevin W. Eliceiri, John G. White, and Nirmala Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia” PNAS, Vol.104, No.49: 19494–19499 (2007)
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, “Free radicals and antioxidants in normal physiological functions and human disease.” Int J Biochem Cell Biol. Vol.39:44–84 (2007).
Dortay H, Akula UM, Westphal C, Sittig M, Mueller-Roeber B, “High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection.” PLoS ONE 6(4): e18900 (2011).
Glushko V, Thaler M, Ros M, “The fluorescence of bilirubin upon interaction with human erythrocyte ghosts.” Biochim Biophys Acta, 719:65–73 (1982).
Tzu-Ming Liu, Chien-Tai Hsieh, Yu-Shing Chen, Fu-Lien Huang, Hsin-Yi Huang, Wen-Jeng Lee, Chun-Ta Kung, Chi-Kuang Sun, “Diagnosing hepatocellular carcinoma with the intensity and the lifetime of two-photon red autofluorescences,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 7903, 79032Z (2011).
Anthony W. Czarnik, “Chemical Communication in Water Using Fluorescent Chemosensors” Acc. Chem., Vol.27, No.10, 302–308 (1994).
B. Stevens, “Some effects of molecular orientation on fluorescenceemission and energy transfer in crystalline aromatic hydrocarbons” Spectrochimica Acta, Vol.18, 439–448 (1962).
Goppert-Mayer M, “Uber Elementarakte mit zwei Quantensprungen.” Ann. Phys. Vol.9,273–95 (1931).
Sauter G, Feichter G, Torhorst J, Moch H, Novotna H, Wagner U, Durmuller U, Waldman FM, “Fluorescence in situ hybridization for detecting erbB-2 amplification in breast tumor fine needle aspiration biopsies,” Acta Cytologica, 40:164-173 (1996).
S. Kinoshita, T. Kushida, H. Ohta, “Subnanosecond fluorescence-lifetime measuring system using single photon counting method with mode-locked laser excitation,” Rev. Sci. Instrum 52,572-575 (1981).
Wolfgang Becker, Axel Bergmann,Christoph Biskup, Laimonas Kelbauskas, Thomas Zimmer, Nikolaj Klocker,Klaus Benndorf, “High resolution TCSPC lifetime imaging,” Proc. SPIE 4963 (2003).
A. Kilpela, J. Ylitalo, K. Maatta, J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978-1984 (1998).
D. V. O’Connor, D. Phillips, “Time-correlated single photo counting ,” Academic Press, London (1984).

J. R. Lakowicz, “Principles of Fluorescence Spectroscopy, 2nd edn,” Plenum Press, New York (1999).
Antony F. McDonagh “Evidence for singlet oxygen quenching by biliverdin IX-α dimethyl ester and its relevance to bilirubin photo-oxidation, ” Biochemical and Biophysical Research Communications Vol.48 Pages 408–415 (1972).
Lightner DA, Quistad GB “Imide products from photo-oxidation of bilirubin and mesobilirubin,” Nat New Biol. 1972 Apr 19;236(68):203–205 (1972).
S.-W. Chu, I-H. Chen, T.-M. Liu, P.-C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909-1911 (2001).
Chi-Kuang Sun, Shi-Wei Chu, Szu-Yu Chen, Tsung-Han Tsai, Tzu-Ming Liu, Chung-Yung Lin, and Huai-Jen Tsai. “Higher harmonic generation microscopy for developmental biology,” Journal of Structural Biology 147, 19–30 (2004).
C.-C. Huang, K.-Y. Chuang, C.-J. Huang, T.-M. Liu*, and C.-S. Yeh* “Graphite-shelled Si nanoparticles and their Au/Si heterodimers: preparation, photoluminescence, and second harmonic generation,” Journal of Physical Chemistry C 115, 9952-9960(2011).
Chang SE, Foster S, Betts D, Marnock WE. “DOK, a cell line established from human dysplastic oral mucosa, shows a partially transformed non-malignant phenotype, ” Int J Cancer. Dec 2;52(6):896-902 (1992).
Yang, C.Y. and Meng, C.L. “Regulation of PG synthase by EGF and PDGF in
human oral, breast, stomach, and fibrosarcoma cancer cell lines,” J. Dent.
Res. 73, pp. 1407–1415 (1994).
Rheinwald JG, Beckett MA . “Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes,” Cell 22: 629-632 (1980).
Momose,F., Araida,T., Negishi,A., Ichijo,H., Shioda,S., and Sasaki,S. “Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas,” J. Oral Pathol. Med., 18: 391-395 (1989).
Kasten, F.H., Pineda, L.F.R., Schneider, P.E., Rawls, H.R.,Foster, T.A., “Biocompatibility testing of an experimental fluoride releasing resin using human gingival epithelial cells in vitro,” In Vitro Cell. Dev. Biol. 25, 57–62 (1989).
F. R. Trull, O. Ibars, and D. A. Lightner, “Conformation inversion of bilirubin formed by reduction of the biliverdin-human serum albumin complex: evidence from circular dichroism,” Arch. Biochem. Biophys. 298, 710-714 (1992).
Damian K. Bird, Long Yan, Kristin M. Vrotsos, Kevin W. Eliceiri, Emily M. Vaughan, Patricia J. Keely, John G. White, and Nirmala Ramanujam, “Metabolic Mapping of MCF10A Human Breast Cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH” Cancer Research, (2005).
Hai-Jui Lin, Petr Herman, and Joseph R. Lakowicz, “Fluorescence Lifetime-Resolved pH Imaging of Living Cells” Cytometry Part A :77– 89 (2003)
Yingru Liua, Jie Liub, Wolfram Tetzlaffb, Donald W. Patyc, Max S. Cynader “Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis” Free Radical Biology and Medicine Vol.40, Pages 960–967 (2006)
Schwertner HA, Jackson WG, Tolan G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin Chem Vol.40,18-23(1994).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6982-
dc.description.abstract我們成功的以雙光子螢光生命週期影像之成份來辨別不同形態與階段的口腔癌細胞,並以單光子、雙光子螢光光譜與螢光生命週期研究了許多會造成其差異的因素。使用紅外光的鉻貴橄欖石飛秒鎖模雷射作為激發雙光子螢光的光源,可以避免在活體樣品中對細胞造成光傷害,並能有效的激發出細胞中膽綠素的紅螢光。我們以DOK、OECM-1、SCC-15、HSC-3及SG這五株人體口腔株化細胞株作為初步辨別,並以兩種生命週期(t1、t2)的成分來分析曲線。藉由細胞中紅螢光生命週期影像的表現,對應到膽綠素在細胞代謝中的差異,細胞中由於膽綠素代謝的能力不同,並會結合細胞中不同的蛋白而產生不同的生命週期,我們發現,DOK與OECM-1的t1時間較長(~500ps),SCC-15與HSC-3相對的較短(~370ps),而正常口腔細胞SG有明顯更短的t1(~270ps),輔以t2的結果作分類,便可明顯的區別出五株細胞。藉由螢光生命週期影像不同的表現,我們未來可以在活體中檢測細胞的狀態,並可能早期的檢驗出類癌症而不需要在病變後才以粘膜來確認。zh_TW
dc.description.abstractWe have observed the red fluorescence of five oral cell lines with multi-photon fluorescence lifetime and intensity. With lifetime trace, single photon, and two photon fluorescence spectrum, we found out that biliverdin is one of red fluorescence source (exciting spectrum peak around ~660nm). Four oral cancer cells from tongue and a non-cancer oral cell lines: S-G (normal oral cell as control group), DOK (pre-cancer oral cell), OECM-1, SCC-15, and HSC-3(different stage of malignancy) were investigated by a femtosecond Cr:forsterite laser -based multi-photon fluorescence lifetime image. Due to shift of metabolic status, we used two component to fit lifetime histgrom and detected that DOK and OECM-1 has longer t1 lifetime(~500ps), SCC-15 and HSC-3 have relatively short 370ps, and normal oral, S-G cells have much shorter t1 lifetime(~270ps). In addition, S-G cell have visible shorter t2 lifetime (~1.6ns), cancer cells general longer (~1.9ns). With our study result, we believe this lifetime of biliverdin fluorescence is potential to serve as an diagnostic index on the stage and malignancy of oral cancers in the future.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:23:00Z (GMT). No. of bitstreams: 1
ntu-101-R98548046-1.pdf: 2681697 bytes, checksum: bbed07416a3c1cc4d5a9c647bf055e36 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
誌謝
摘要
第一章 緒論…………………………………………………………………………………………………………1
1.1 細胞的能量代謝……………………………………………………………………………………1
1.2 瓦伯效應 (Warburg Effect)……………………………………………………2
1.3 以NADH / FAD 的代謝來診斷癌症………………………………………………3
1.4 以紫質的代謝來診斷癌症……………………………………………………………………5
1.5 血基質代謝………………………………………………………………………………………………7
1.6 膽色素的自發螢光…………………………………………………………………………………9
1.7 研究動機…………………………………………………………………………………………………9
第二章 基礎理論…………………………………………………………………………………………………11
2.1 螢光的激發……………………………………………………………………………………………11
2.2 雙光子螢光激發……………………………………………………………………………………12
2.3 螢光生命週期影像(FLIM)系統………………………………………………………14
2.3.1  時間相關單光子計數技術(TCSPC)原理…………………………………14
2.3.2  恆比鑑別器(CFD)…………………………………………………………………………15
2.3.3  脈衝響應函數(IRF)………………………………………………………………………17
2.4 株化細胞株……………………………………………………………………………………………18
第三章 材料與方法……………………………………………………………………………………………20
3.1 研究材料…………………………………………………………………………………………………20
3.1.1  細胞(Cell)……………………………………………………………………………………20
3.1.2  標準品配製(Standard)……………………………………………………………21
3.1.3  細胞培養液配製(Medium)…………………………………………………………23
3.2 系統設置………………………………………………………………………………………………24
3.2.1  光譜量測……………………………………………………………………………………………25
3.2.2  聚焦位置定位方法…………………………………………………………………………26
3.2.3  螢光生命週期量測…………………………………………………………………………27
3.3 口腔癌細胞株………………………………………………………………………………………31
3.4 細胞培養………………………………………………………………………………………………33
3.4.1  培養基的更換…………………………………………………………………………………33
3.4.2  繼代培養(Subculture)……………………………………………………………34
3.4.3  細胞冷凍保存……………………………………………………………………………………35
3.4.4  細胞解凍活化……………………………………………………………………………………36
3.5 微型細胞培養環境………………………………………………………………………………37
第四章 實驗結果與討論……………………………………………………………………………………39
4.1 雙光子螢光光譜……………………………………………………………………………………39
4.2 標準品螢光生命週期……………………………………………………………………………40
4.3 口腔癌細胞的螢光生命週期影像………………………………………………………46
4.4 螢光生命週期累積統計圖表(Histogram)…………………………………49
4.5 以螢光生命週期區別口腔癌細胞………………………………………………………51
第五章 結論…………………………………………………………………………………………………………53
文獻回顧(Reference)………………………………………………………………………………………55
dc.language.isozh-TW
dc.title以多光子螢光生命週期影像顯微術來鑑別正常與口腔癌細胞zh_TW
dc.titleMultiphoton fluorescence lifetime imaging microscopy (FLIM) of Bilirubin oxidants of oral cancer cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫啟光(Chi-Kuang Sun),謝達斌(Dar-Bin Shieh),高甫仁(Fu-Jen Kao),林文澧(Win-Li Lin)
dc.subject.keyword螢光,生命週期,口腔癌,膽紅素,zh_TW
dc.subject.keywordfluorescence,lifetime,oral cancer,bilirubin,FLIM,en
dc.relation.page58
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved