請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69821
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱士維 | |
dc.contributor.author | Hou-Xian Ding | en |
dc.contributor.author | 丁厚獻 | zh_TW |
dc.date.accessioned | 2021-06-17T03:29:28Z | - |
dc.date.available | 2023-03-01 | |
dc.date.copyright | 2018-03-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-02-22 | |
dc.identifier.citation | Reference
[1] Hooke, R. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses. Jo. Martyn and Ja. Allestry for the Royal Society, (1665). [2] Egerton, F. N. A History of the Ecological Sciences, Part 19: Leeuwenhoek's Microscopic Natural History., Bulletin of the Ecological Society of America, (2006). [3] Abbe, E. K. Beiträge zur Theori des Mikroskops und der mikroskopischen Wahrnehmung., Archiv fur mikroskopische Anatomy, (1873). [4] Egner, A., Jakobs, S. & Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences 99, 3370-3375 (2002). [5] Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. in IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology. 10 (SPIE). [6] Heintzmann, R. & Cremer, C. G. in BiOS Europe '98. 12 (SPIE). [7] Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 82-87 (2000). [8] Schrader, M., Hell, S. W. & van der Voort, H. T. M. Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration. Journal of Applied Physics 84, 4033-4042 (1998). [9] Gugel, H. et al. Cooperative 4Pi Excitation and Detection Yields Sevenfold Sharper Optical Sections in Live-Cell Microscopy. Biophysical Journal 87, 4146-4152 (2004). [10] Gustafsson, Agard & Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. Journal of Microscopy 195, 10-16 (1999). [11] Jörg Bewersdorf, A. E., Stefan W. Hell. (ed James B. Pawley) Ch. 4Pi Microscopy, (2006). [12] Betzig, E. et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642-1645 (2006). [13] Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3, 793-796 (2006). [14] Hell, S. W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A 77, 859-860 (2003). [15] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 780-782 (1994). [16] Hell, S. W. & Kroug, M. Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit. Applied Physics B 60, 495-497 (1995). [17] Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America 102, 13081-13086 (2005). [18] Ingaramo, M. et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proceedings of the National Academy of Sciences 111, 5254-5259 (2014). [19] Blom, H. & Widengren, J. Stimulated Emission Depletion Microscopy. Chemical Reviews 117, 7377-7427 (2017). [20] Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nature Methods 11, 253 (2014). [21] Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349 (2015). [22] Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M. & Kawata, S. High-resolution confocal microscopy by saturated excitation of fluorescence. Phys Rev Lett 99, 228105 (2007). [23] Nguyen, A. D. et al. 3D super-resolved in vitro multiphoton microscopy by saturation of excitation. Optics Express 23, 22667-22675 (2015). [24] Yamanaka, M. et al. Saturated excitation microscopy for sub-diffraction-limited imaging of cell clusters. J Biomed Opt 18, 126002 (2013). [25] Yamanaka, M. et al. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging. Journal of Biomedical Optics 20, 101202-101202 (2015). [26] Oketani, R. et al. Saturated two-photon excitation fluorescence microscopy with core-ring illumination. Optics Letters 42, 571-574 (2017). [27] Yamanaka, M. et al. Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions. Interface Focus 3 (2013). [28] Nienhaus, K. & Nienhaus, G. U. Where Do We Stand with Super-Resolution Optical Microscopy? Journal of Molecular Biology 428, 308-322 (2016). [29] Stefan, W. H. et al. The 2015 super-resolution microscopy roadmap. Journal of Physics D: Applied Physics 48, 443001 (2015). [30] Yamanaka, M., Kawano, S., Fujita, K., Smith, N. I. & Kawata, S. Beyond the diffraction-limit biological imaging by saturated excitation microscopy. Journal of Biomedical Optics 13, 050507-050507-050503 (2008). [31] Yamanaka, M. et al. SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomedical Optics Express 2, 1946-1954 (2011). [32] Smithpeter, C. L., Dunn, A. K., Welch, A. J. & Richards-Kortum, R. Penetration depth limits of in vivo confocal reflectance imaging. Applied Optics 37, 2749-2754 (1998). [33] Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73-76 (1990). [34] Miller, D. R. et al. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure. Biomedical Optics Express 8, 3470-3481 (2017). [35] Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nature Methods 14, 388 (2017). [36] Tønnesen, J. & Nägerl, U. V. Superresolution imaging for neuroscience. Experimental Neurology 242, 33-40 (2013). [37] Hell, S., Reiner, G., Cremer, C. & Stelzer, E. H. K. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. Journal of Microscopy 169, 391-405 (1993). [38] Beauvoit, B., Evans, S. M., Jenkins, T. W., Miller, E. E. & Chance, B. Correlation Between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors. Analytical Biochemistry 226, 167-174 (1995). [39] Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: Second window for in vivo imaging. Nat Nano 4, 710-711 (2009). [40] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Meth 7, 603-614 (2010). [41] Kamiyama, D. & Huang, B. Development in the STORM. Developmental cell 23, 1103-1110 (2012). [42] Vaziri, A., Tang, J., Shroff, H. & Shank, C. V. Multilayer three-dimensional super resolution imaging of thick biological samples. Proceedings of the National Academy of Sciences 105, 20221-20226 (2008). [43] York, A. G., Ghitani, A., Vaziri, A., Davidson, M. W. & Shroff, H. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Meth 8, 327-333 (2011). [44] Török, P. & Munro, P. R. T. The use of Gauss-Laguerre vector beams in STED microscopy. Optics Express 12, 3605-3617 (2004). [45] Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a Living Mouse Brain. Science 335, 551-551 (2012). [46] Takasaki, Kevin T., Ding, Jun B. & Sabatini, Bernardo L. Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy. Biophysical Journal 104, 770-777 (2013). [47] Urban, Nicolai T., Willig, Katrin I., Hell, Stefan W. & Nägerl, U V. STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices. Biophysical Journal 101, 1277-1284 (2011). [48] Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proceedings of the National Academy of Sciences 109, E135-E143 (2012). [49] Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat Meth 14, 869-872 (2017). [50] Winter, P. W. et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1, 181-191 (2014). [51] Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nature Methods 13, 359 (2016). [52] Tehrani, K. F., Xu, J., Zhang, Y., Shen, P. & Kner, P. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Optics Express 23, 13677-13692 (2015). [53] Vigil, G., Zhang, Y., Khan, A. & Howard, S. Description of deep saturated excitation multiphoton microscopy for super-resolution imaging. Journal of the Optical Society of America A 34, 1217-1223 (2017). [54] Cella Zanacchi, F. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nature Methods 8, 1047 (2011). [55] Chu, S.-W. et al. Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope. Physical Review Letters 112, 017402 (2014). [56] Lee, H. et al. Point spread function analysis with saturable and reverse saturable scattering. Optics Express 22, 26016-26022 (2014). [57] Shi-Wei Chu, H.-Y. W., Yen-Ta Huang, Tung-Yu Su, Hsuan Lee, Yasuo Yonemaru, & Masahito Yamanaka, R. O., Satoshi Kawata, Satoru Shoji, and Katsumasa Fujita. Saturation and Reverse Saturation of Scattering in a Single Plasmonic Nanoparticle. ACS Photonics 1, 32-37 (2014). [58] Chaze, W., Caballina, O., Castanet, G. & Lemoine, F. The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows. Experiments in Fluids 57, 58 (2016). [59] Gu, M. Advanced Optical Imaging Theory (2000). [60] Kaminer, I., Nemirovsky, J. & Segev, M. Optimizing 3D multiphoton fluorescence microscopy. Optics Letters 38, 3945-3948 (2013). [61] Kawano, S., Smith, N. I., Yamanaka, M., Kawata, S. & Fujita, K. Determination of the Expanded Optical Transfer Function in Saturated Excitation Imaging and High Harmonic Demodulation. Applied Physics Express 4, 042401 (2011). [62] Lippincott-Schwartz, J. & Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in cell biology 19, 555-565 (2009). [63] Kao, Y.-T., Zhu, X. & Min, W. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proceedings of the National Academy of Sciences 109, 3220-3225 (2012). [64] Kao, Y.-T., Zhu, X., Xu, F. & Min, W. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast. Biomedical Optics Express 3, 1955-1963 (2012). [65] Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences of the United States of America 102, 9511-9516 (2005). [66] Eggeling, C., Volkmer, A. & Seidel, C. A. M. Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy. ChemPhysChem 6, 791-804 (2005). [67] Gramatikov, B. I. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer. BioMedical Engineering OnLine 13, 52 (2014). [68] Wilson, T. Resolution and optical sectioning in the confocal microscope. Journal of Microscopy 244, 113-121 (2011). [69] Mueller, M. Introduction To Confocal Fluorescence Microscopy. (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69821 | - |
dc.description.abstract | 於過去的十幾年,光學顯微鏡的解析度已經進步到,超越傳統所認知的阿貝繞射極限,到達了新的領域-超解析顯微鏡. 此項技術已被應用在各種不同的領域且得到相當不錯的結果,像是結構生物學和神經科學. 而不論分子還是細胞,讓其在原本的環境下做觀察都是最好的方式,因此組織影像是光學顯微鏡相當側重的一個觀察領域. 然而目前大部分的超解析顯微鏡無法在穿過組織觀察時,同時保持其解析度. 由目前的超解析技術而言,當觀察深度到達一百微米時,就會受到組織本身的散射以及像差等光學性質所影響,而失去其超解析度.
於許多不同種類的超解析顯微鏡技術當中,飽和激發超解析顯微鏡 (於以下稱作SAX)是一項相當有潛力達成深組織超解析影像的技術. 原因在於SAX是利用時間上的調製來擷取發光源的非線性信號來達到超解析解析度,而時間上的調製又比較不會受到散射等組織的光學性質所影響. 然而傳統的以螢光為發光源的SAX,受到低訊雜比的影響,所能提供的最高解析度僅能到達λ⁄6. 為了提升SAX的解析度, 一項我們過去所做的金奈米粒子為發光源的SAX實驗給出了一個突破口. 於相同條件下,那項實驗提供了λ⁄8的解析度. 二者實驗最大的不同在於金奈米粒子的散射非線性比傳統螢光的飽和非線性來的大. 跟隨那項實驗所給出的概念,於此項研究中,我們建立了一個SAX的模擬程序,並用其來測試不同的非線性響應來找出哪種非線性響應配合SAX可以得到最好的解析度.於結果上來說,我們發現若有適合的非線性響應,SAX的解析度可以達到λ⁄50. 此外,於實驗上,我們提出了一個可能適合的非線性材料來配合SAX來得到更高的解析度. | zh_TW |
dc.description.abstract | In the last decade, resolution of optical microscopy has been ameliorated to surpass the Abbe diffraction limit, which is ~λ⁄2, enabling super-resolution observations. It has already made significant impacts in various fields, such as structural biology and neuroscience. Since molecules and cells should be studied under their own native microenvironments, tissue imaging is one vital requirement for optical imaging. However, most current super-resolution techniques cannot maintain their resolution improvement beyond 100µm depth inside a bio-tissue due to intrinsic scattering and aberration.
Among the various super-resolution imaging methods, saturated excitation (SAX) microscopy provides great potential for deep tissue imaging. The reason is that SAX enhances spatial resolution by extracting emission nonlinearity with temporal modulation, which is less affected through tissue. Nevertheless, current resolution of fluorescence-based SAX microscopy rarely exceeds λ⁄6, due to inadequate signal-to-noise ratio. To further enhance SAX resolution, a hint comes from our previous study that λ⁄8 resolution was obtained by replacing the nonlinear emitter from fluorophores to Au nanoparticles, which the latter exhibits larger nonlinearity than the former. Following the concept of enhancing resolution by increasing nonlinearity, in this work, we build a SAX simulator and test it with different nonlinear responses to elucidate an optimized condition that SAX resolution reaches ~ λ⁄50. In addition, a possible nanomaterial candidate with huge nonlinearity is found, showing the feasibility of ultrahigh spatial resolution of SAX. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:29:28Z (GMT). No. of bitstreams: 1 ntu-107-R04245017-1.pdf: 3211546 bytes, checksum: aa81a7479a229c5366786c8fe72e84f9 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… .I
誌謝………………………………………………………………………………. II 中文摘要………………………………………………………………………… III 英文摘要…………………………………………………………………………. IV 目錄………………………………………………………………………………...V 圖目錄……………………………………………………………………………...VII 表目錄……………………………………………………………………………...X 1. Overview………………………………………………………………………… ..1 1-1. Resolution limit of optical microscopy……………………………………1 1-2. Super-resolution (SR) techniques………………………………………....2 1-3. Limitation of SR techniques in tissues …………………………………...8 1.3. --- Advantage of saturated excitation (SAX) microscopy 1-4. Current limitation of SAX microscopy…………………………………...11 1-5. A hint from plasmonic nanoparticle based SAX………………………....12 1-6. Goal and Outline………………………………………………………….15 2. Principles and methods…………………………………………………………..16 2-1. Point spread function (PSF) of a Gaussian beam………………………...16 2-2. Resolution of confocal and SAX microscopy…………………………….21 2-3. Simulation method of SAX microscopy…………….................................26 3. Simulation results…………………………………………………………………27 3-1. Nonlinear response curves based on multiphoton controllable transitions.28 3-1-1. Multi-photon “dark to bright state” transition to create reverse saturation………………………………………………………………..30 3-1-2. Multi-photon “bright to dark state” transition to create large curvature of saturation……………………………………………………………..37 3-2. Analytical response curves………………………………………………..42 3-2-1. Growth function response………………………………………..43 3-2-2. Hyperbolic response……………………………………………...47 4. Discussion………………………………………………………………………….53 4-1. How to improve SAX resolution: Key concept from simulation…………53 4-2. Candidate material - Si nanoparticle………………………………………59 5. Conclusion…………………………………………………………………………60 6. Appendix…………………………………………………………………………..61 A. The resolution of confocal adopted SAX…………………………………...61 Reference……………………………………………………………………………..64 | |
dc.language.iso | en | |
dc.title | 飽和激發超解析顯微鏡之理論極限之研究 | zh_TW |
dc.title | The theoretical study of the resolution limitation of saturated excitation microscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫啟光,張之威 | |
dc.subject.keyword | 超解析顯微鏡,深組織影像,飽和激發顯微鏡, | zh_TW |
dc.subject.keyword | super-resolution microscopy,deep tissue image,saturated excitation microscopy, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201800657 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-02-23 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。