請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德 | |
| dc.contributor.author | Yu-Hsuan Yin | en |
| dc.contributor.author | 殷瑀萱 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:28:59Z | - |
| dc.date.available | 2021-04-18 | |
| dc.date.copyright | 2018-04-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-26 | |
| dc.identifier.citation | Reference
Akca, D. (2003), Full Automatic Registration of Laser Scanner Point Clouds, Optical 3D, Measurement Techniques VI, 330-337. Bellian, J. A., C. Kerans, and D. C. Jennette (2005), Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling, Journal of Sedimentary Research, 75(2), 166-176. Besl, P. J., and N. D. McKay (1992), A method for registration of 3-D shapes, IEEE Transactions on pattern analysis and machine intelligence, 14(2), 239-256. Boehler, W., G. Heinz, and A. Marbs (2002), The potential of non-contact close range laser scanners for cultural heritage recording, International archives of photogrammetry remote sensing and spatial information sciences, 34(5/C7), 430-436. Buckley, S. J., J. Howell, H. Enge, and T. Kurz (2008), Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations, Journal of the Geological Society, 165(3), 625-638. Capart, H., and L. Fraccarollo (2011), Transport layer structure in intense bed-load, Geophysical Research Letters, 38(20), 1-6, doi: 10.1029/2011gl049408. Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K.-H. Chen, R.-J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, Journal of Geophysical Research, 116(B8), 1-16, doi: 10.1029/2011jb008242. Cook, K. L., J. M. Turowski, and N. Hovius (2014), River gorge eradication by downstream sweep erosion, Nature Geoscience, 7(9), 682-686, doi: 10.1038/ngeo2224. Dadson, S. J., N. Hovius, H. Chen, W. B. Dade, M.-L. Hsieh, S. D. Willett, J.-C. Hu, M.-J. Horng, M.-C. Chen, C. P. Stark, D. Lague, and J.-C. Lin (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648, doi: 10.1038/nature02150.Davy, P., and D. Lague (2009), Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research, 114(F3), 1-16, doi: 10.1029/2008jf001146. Duvall, A., E. Kirby, and D. Burbank (2004), Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California, Journal of Geophysical Research, 109(F3), doi: 10.1029/2003jf000086. Frey, P., and M. Church (2009), Geophysics. How river beds move, Science, 325(5947), 1509-1510, doi: 10.1126/science.1178516. Gilbert, G. K. (1877), Report on the Geology of the Henry Mountains, p. 106, US Government Printing Office. Girardeau-Montaut, D., M. Roux, R. Marc, and G. Thibault (2005), Change detection on points cloud data acquired with a ground laser scanner, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(PART 3), 30-35. Habib, A., M. Ghanma, M. Morgan, and R. Al-Ruzouq (2005), Photogrammetric and LiDAR data registration using linear features, Photogrammetric Engineering & Remote Sensing, 71(6), 699-707. Hodge, R., J. Brasington, and K. Richards (2009), Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics, Sedimentology, 56(7), 2024-2043, doi: 10.1111/j.1365-3091.2009.01068.x. Hohenthal, J., P. Alho, J. Hyyppä, and H. Hyyppä (2011), Laser scanning applications in fluvial studies, Progress in Physical Geography, 35(6), 782-809, doi: 10.1177/0309133311414605. Howard, A. D., W. E. Dietrich, and M. A. Seidl (1994), Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research: Solid Earth, 99(B7), 13971-13986, doi: 10.1029/94jb00744. Jaboyedoff, M., D. Demers, J. Locat, A. Locat, P. Locat, T. Oppikofer, D. Robitaille, and D. Turmel (2009), Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks, Canadian Geotechnical Journal, 46(12), 1379-1390, doi: 10.1139/t09-073. Johnson, J. P. L., and K. X. Whipple (2010), Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate, Journal of Geophysical Research: Earth Surface, 115(F2), 1-21, doi: 10.1029/2009jf001335. Lague, D., N. Brodu, and J. Leroux (2013), Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26, doi: 10.1016/j.isprsjprs.2013.04.009. Lajeunesse, E., L. Malverti, and F. Charru (2010), Bed load transport in turbulent flow at the grain scale: Experiments and modeling, Journal of Geophysical Research, 115(F4), doi: 10.1029/2009jf001628. Marshak, S. (2008), Earth: Portrait of a Planet, 3rd ed., p. 590, W.W. Norton, New York & London. McCaffrey, K. J. W., R. R. Jones, R. E. Holdsworth, R. W. Wilson, P. Clegg, J. Imber, N. Holliman, and I. Trinks (2005), Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork, Journal of the Geological Society, 162(6), 927-938, doi: 10.1144/0016-764905-017. Metivier, F., and P. Meunier (2003), Input and output mass flux correlations in an experimental braided stream. Implications on the dynamics of bed load transport, Journal of Hydrology, 271(1), 22-38, doi: https://doi.org/10.1016/S0022-1694(02)00312-8. Milan, D. J., G. L. Heritage, and D. Hetherington (2007), Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river, Earth Surface Processes and Landforms, 32(11), 1657-1674, doi: 10.1002/esp.1592. Olinde, L., and J. P. L. Johnson (2015), Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream, Water Resources Research, 51(9), 7572-7589, doi: 10.1002/2014WR016120. Olsen, M. J., E. Johnstone, F. Kuester, N. Driscoll, and S. A. Ashford (2010), New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections, Journal of Surveying Engineering, 137(1), 14-25. Schaller, M., N. Hovius, S. D. Willett, S. Ivy-Ochs, H. A. Synal, and M. C. Chen (2005), Fluvial bedrock incision in the active mountain belt of Taiwan fromin situ-produced cosmogenic nuclides, Earth Surface Processes and Landforms, 30(8), 955-971, doi: 10.1002/esp.1256. Schneider, J., R. Hegglin, S. Meier, J. Turowski, M. Nitsche, and D. Rickenmann (2014), Studying sediment transport in mountain rivers by mobile and stationary RFID antennas, River flow 2010, 1723-1730. Shaker, A. (2004), The line based transformation model (LBTM): A new approach to the rectification of high-resolution satellite imagery, The International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, 35(3), 850-856. Sklar, L. S., and W. E. Dietrich (2001), Sediment and rock strength controls on river incision into bedrock, Geology, 29(12), 1087-1090, doi: 10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2. Syvitski, J. P., M. D. Morehead, D. B. Bahr, and T. Mulder (2000), Estimating fluvial sediment transport: The rating parameters, Water Resources Research, 36(9), 2747-2760, doi: 10.1029/2000wr900133. Tucker, G. E., and K. X. Whipple (2002), Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, Journal of Geophysical Research: Solid Earth, 107(B9), ETG 1-1-ETG 1-16, doi: 10.1029/2001JB000162. Turowski, J. M., and D. Rickenmann (2009), Tools and cover effects in bedload transport observations in the Pitzbach, Austria, Earth Surface Processes and Landforms, 34(1), 26-37, doi: 10.1002/esp.1686. Turowski, J. M., N. Hovius, H. Meng-Long, D. Lague, and C. Men-Chiang (2008), Distribution of erosion across bedrock channels, Earth Surface Processes and Landforms, 33(3), 353-363, doi: 10.1002/esp.1559. Vosselman, G., and H.-g. Maas (2001), Adjustment and filtering of raw laser altimetry data, paper presented at Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden, 62-73. Wheaton, J. M., J. Brasington, S. E. Darby, and D. A. Sear (2010), Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets, Earth Surface Processes and Landforms, 35(2), 136-156. Whipple, K. X., G. S. Hancock, and R. S. Anderson (2000), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112(3), 490-503, doi: 10.1130/0016-7606(2000)112<490:riibma>2.0.co;2. Wilcock, P. R., and J. C. Crowe (2003), Surface-based Transport Model for Mixed-Size Sediment, Journal of Hydraulic Engineering, 129(2), 120-128, doi: 10.1061/(ASCE)0733-9429(2003)129:2(120). Wilson, A., N. Hovius, and J. M. Turowski (2013), Upstream-facing convex surfaces: Bedrock bedforms produced by fluvial bedload abrasion, Geomorphology, 180-181, 187-204, doi: 10.1016/j.geomorph.2012.10.010. Wohl, E. (2014), Time and the rivers flowing: Fluvial geomorphology since 1960, Geomorphology, 216(Supplement C), 263-282, doi: https://doi.org/10.1016/j.geomorph.2014.04.012. Yanites, B. J., and G. E. Tucker (2010), Controls and limits on bedrock channel geometry, Journal of Geophysical Research, 115(F4), doi: 10.1029/2009jf001601. Zingg, T. (1935), Beitrag zur schotteranalyse, Schweizerische Mineralogische und Petrographische Mitteilungen, 15, 38-140. 中文參考文獻 李瑞宗(1998)錐麓古道沿線聚落暨建築之調查研究,太魯閣國家公園管理處研究報告,共198頁。 林晏州(2003)太魯閣國家公園生態旅遊細部規劃案,太魯閣國家公園管理處研究報告,共191頁。 駱香林(1955)花蓮簡史(續),花蓮文獻 3:1-3頁。 羅偉(1993)五萬分之一臺灣地質圖:圖幅第二十七號(大禹嶺),新北市:經濟部中央地質調查所出版。 羅偉、劉佳玫、楊昭男、王執明(2009)五萬分之一臺灣地質圖:圖幅第二十八號(新城),新北市:經濟部中央地質調查所出版。 網路參考資料 ArcGIS 10.1 Online User Guide (ESRI): https://www.nodc.noaa.gov/sog/ghrsst/documents/ESRI_ArcGIS_GHRSST_Rutherford09Dec2008.pdf Petrov Y (2015) Ellipsoid fit Functions at MathWorks: https://cn.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit?focused=5759168&tab=function Riegl VZ-400 amd VZ-1000 Datasheet Website: http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VZ-400_2017-06-14.pdf https://www.3dlasermapping.com/wp-content/uploads/2017/10/DataSheet_VZ-1000_2017-06-14.pdf 水文年報歷年電子書(2015-2017),經濟部水利署:https://www.3dlasermapping.com/wp-content/uploads/2017/10/DataSheet_VZ-1000_2017-06-14.pdf 集水區地形及地質調查成果查詢系統(2012),經濟部中央地質調查所:http://gwh.moeacgs.gov.tw/gwh/gsb97-2/sys9/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69811 | - |
| dc.description.abstract | 在河流地形演育中,河流如何搬運沉積物是一個重要的課題,特別是在洪水事件時對於大量或大型沉積物的搬運,經常主導著河流地形的變化。過去研究受限於現地觀察記錄地形的變化較為困難,河流作用研究中多以電腦數值模擬或縮尺模型在實驗室內進行,此二者皆有無法完全忠實反映現地河流狀況的問題。然而隨著科技的進步,高精度的地形空間資訊已可有效率的取得,並得以廣泛的使用,本研究利用地面雷射掃描法(terrestrial laser scanning, TLS)針對立霧溪中游段燕子口一帶現地測量河流地形,並利用不同時期的測量結果觀察河流沉積物的搬運作用。
燕子口河段中分布了許多從支流帶來的大型片麻岩礫石,其大小可達十數公尺,其岩性與周圍大理岩底岩差異甚大,易於辨識,且該河段的上下游皆無相似片麻岩礫石分布,而具有其獨特性。故本研究以這些礫石為目標,在雨季及乾季前後利用TLS觀測河道礫石的分布,比較不同時期的礫石變化,並與水文資料比對,討論乾季及雨季中不同水流情況下的搬運能力,以及不同尺寸礫石與搬運距離的關係及搬運模式。本研究將搬運作用分為滑動、傾倒、轉動、滾動、跳動等五類,根據礫石型態不同可對應到不同的搬運模式與搬運閾值,其結果發現巨型礫石可搬運的主因並非單純受水力大小影響,而是和礫石的三軸位態及其樣貌有關。 此外本研究對比自動攝影系統每半小時所拍攝之河道照片,分析颱風事件對河流搬運作用所造成之影響。除了觀察河流沉積物的搬運作用外,TLS的高精度測量結果亦可觀察河流侵蝕作用中的磨蝕與拔蝕現象。綜合以上,本研究以TLS獲得了高精度的地形模型,並更進一步了解了河流沉積物的搬運作用過程。 | zh_TW |
| dc.description.abstract | How sediments are transported in rivers has long been a critical issue in fluvial geomorphology, especially the transportation process of large amount of sediments during flood events. In previous studies, this question has been generally tackled using numerical simulations and flume experiments. Results from direct observations of sediment transport in the field are scarce. We therefore intend to observe in situ fluvial sediment transportation processes during flood events based on terrestrial laser scanning (TLS) technique in a mountain bedrock channel in eastern Taiwan.
Along the Swallow Grotto (Yanzikou) section of the Liwu River, there are many huge boulders with different sizes, up to tens of meters. Most of these boulders, which came from rock falls of a nearby tributary, are composed of gneiss, distinctively different from the marble bedrock of the river channel. Thus, we chose these boulders as our survey targets in this study. We surveyed the boulders by TLS annually between the rainy and dry seasons to observe their geometry. By comparing the scanning results of the river segment in different time, we are able to analyze the movement mechanism and transport distance of each boulder and the relationship between the transportation and fluvial hydraulic conditions. We divided the transportation modes into 5 types: sliding, toppling, rotation, rolling and saltation, and analyzed the relationship between transportation modes, boulder conditions, and the size threshold of transported boulders. We found that the hydraulic condition is not the only reason to cause the movement of the boulders, but the condition of the boulders is also an important factor to affect their movements. We used an automatic camera to take photographs at the same site every 30 minutes to identify the flood events that caused the boulder movements. Furthermore, we also observed processes of fluvial erosion in this study based on the TLS data, including abrasion and plucking processes of the boulders. These results would allow us to further understand the sediment transportation processes in various geomorphic systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:28:59Z (GMT). No. of bitstreams: 1 ntu-107-R04224105-1.pdf: 16474077 bytes, checksum: 7dc466a3609d9b42e0253ac3dda5dbb4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 IV Abstract V 圖目錄 IX 表目錄 XII 第1章、 前言 1 1.1. 研究動機與目的 1 1.2. 研究區域 3 1.2.1. 研究區域地質背景與其歷史 6 1.2.2. 研究區域氣候與水文現況 9 第2章、 前人研究 11 2.1. 河流作用(fluvial processes)研究 11 2.1.1. 河流地形變化與河流分類 11 2.1.2. 沉積物分類與底岩型河川所受之河流作用 12 2.1.3. 河流沉積物搬運作用研究 14 2.2. 地面雷射掃描測量法(TLS)研究與應用 17 2.2.1. 地面雷射掃描(TLS)測量技術 18 2.2.2. 點雲數據處理方式 20 2.2.3. 地面雷射掃描測量法(TLS)於地質學上之應用 21 第3章、 研究方法 24 3.1. 製作數值地形模型 24 3.1.1. 野外地面雷射掃描測量 24 3.1.2. 疊站、統一座標系統 30 3.2. 單一變動礫石篩選 33 3.2.1. 篩選變動礫石 33 3.2.2. 單一礫石分析 35 3.3. 不同期礫石變動分析 37 3.3.1. 兩期礫石匹配及分類 37 3.3.2. 搬運礫石量測移動量 39 第4章、 研究結果 42 4.1. 各期地形掃描結果呈現 42 4.2. 雨季、乾季兩期模型比較及礫石挑選結果 47 4.2.1. 雨季資料(2016.08.22~2016.12.30) 48 4.2.2. 乾季資料(2016.12.30~2017.05.19) 51 4.3. 變動礫石之匹配結果 53 第5章、 討論 60 5.1. 河床荷重(bed load)的搬運模式特性討論 60 5.1.1. 力學分析搬運模式與礫石三軸關係 60 5.1.2. 出現與消失類別於搬運作用之意義討論 65 5.1.3. 搬運模式之其他特殊案例分析 66 5.1.4. 搬運模式綜合討論 67 5.2. 河流的搬運能力與河床荷重(bed load)關係討論 71 5.2.1. 礫石大小與搬運距離關係 71 5.2.2. 雨季與乾季討論 74 5.3. 使用TLS掃描結果觀察之侵蝕作用 78 5.4. TLS應用於河流沉積物搬運作用研究之優缺點討論 81 第6章、 結論 83 參考文獻 85 附錄一、野外拍攝河道礫石照片集 91 附錄二、各期挑選出之變動礫石完整測量結果 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 洪水事件 | zh_TW |
| dc.subject | 地面雷射掃描 | zh_TW |
| dc.subject | 沉積物搬運 | zh_TW |
| dc.subject | 河流作用 | zh_TW |
| dc.subject | 立霧溪 | zh_TW |
| dc.subject | flood events | en |
| dc.subject | Liwu River | en |
| dc.subject | fluvial processes | en |
| dc.subject | sediment transport | en |
| dc.subject | terrestrial laser scanning (TLS) | en |
| dc.title | 利用高精度地形測量觀察底岩型河川在洪水事件時的搬運作用 | zh_TW |
| dc.title | Sediment transportation processes in bedrock channel during flood events from high-resolution topographic survey | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王驥魁,景國恩,莊昀叡,顏君毅 | |
| dc.subject.keyword | 立霧溪,河流作用,沉積物搬運,地面雷射掃描,洪水事件, | zh_TW |
| dc.subject.keyword | Liwu River,fluvial processes,sediment transport,terrestrial laser scanning (TLS),flood events, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201800524 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 16.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
