Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/697
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorChing-Chen Yehen
dc.contributor.author葉勁辰zh_TW
dc.date.accessioned2021-05-11T04:59:46Z-
dc.date.available2019-08-20
dc.date.available2021-05-11T04:59:46Z-
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-06
dc.identifier.citation[1] M. I. Katsnelson and K. S. Novoselov, Solid State Communications, 143, 3 (2007).
[2] Y.-T. Fan, M.-C. Lo, C.-C. Wu, P.-Y. Chen, J.-S. Wu, C.-T. Liang, and S.-D. Lin, AIP Adv. 7, 075213 (2017).
[3] Albert F. Rigosi, Chieh-I Liu, Bi-Yi Wu, Hsin-Yen Lee, Mattias Kruskopf, Yanfei Yang, Heather M. Hill, Jiuning Hu, Emily G. Bittle, Jan Obrzut, Angela R. Hight Walker, Randolph E. Elmquist, and David B. Newell, Microelectronic Engineering 194, 51 (2018).
[4] A. M. Clogston, Phys. Rev. Lett. 9, 6 (1962).
[5] B. S. Chandrasekhat, Appl. Phys. Lett. 1, 1 (1962).
[6] H. K. Onnes, Leiden Comm. (1911).
[7] W. Meissner and R. Ochsenfeld, Naturwiss, 21, 787 (1933).
[8] C. J. Gorter and H. B. G. Casimir, Phys, 1, 306 (1934a)
[9] F. London and H. London, Proc. R. Soc., A, 155, 71 (1935).
[10] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 5 (1957).
[11] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).
[12] Leon Cooper, Phys. Rev. 104, 1189 (1956).
[13] Alan M. J. Kadin, Supercond. Nov. Mag. 20(4), 285 (2005)
[14] Shigeji Fujita; Kei Ito; and Slavador Godoy, (2009). Quantum Theory of Conducting Matter. Springer Publishing. pp. 15–27.
[15] Richard P. Feynman, Robert Leighton; and Matthew Sands. Lectures on Physics, Vol.3. Addison–Wesley. pp. 21–7, 8. (1965)
[16] W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956).
[17] V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys. (USSR) 20, 1064 (1950).
[18] L. P. Gor’kov Sov. Phys. JETP 36, 6 (1959)
[19] A. A. Abrikosov, J. Exp. Theor. Phys. (USSR) 32, 1442 (1957).
[20] N. R. Werthamer, E. Helfand and P. C. Honenberg, Phys. Rev. 147, 295 (1966))
[21] http://web.mit.edu/6.763/www/FT03/Lectures/Lecture17.pdf
[22] J. L. Zhang, L. Jiao, Y. Chen, H. Q. Yuan, Phys. Condens. Matter. 6, 463 (2012).
[23] R. J. Elliott Phys. Re. 96 266 (1954).
[24] S.-T. Lo, S.-W. Lin, Y.-T. Wang, S.-D. Lin and C.-T. Liang, Sci. Rep. 4, 5438 (2014).
[25] A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 44, 291 (1980).
[26] N. D. Mermin and H. Wanger, Phys. Rev. Lett. 17, 1307 (1966).
[27] M. R. Beasley, J. E. Mooij and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979).
[28] D. S. Fisher, M. P. Fisher, and D. A. Huse, Phys. Rev. B 43, 1130 (1991).
[29] Guan-Ming Su, “Studies of Kosterlitz–Thouless Transition: Numeric Simulation of the 2D XY Model and 2D Superconductivity in 4-nm Aluminum Nano-Film,” M.S. thesis, National Taiwan University, Taiwan, 2018.
[30] A. Y. Cho and J. R. Arthur Prog. Solid State Chem. 10, 157 (1975).
[31] P. Das R. Bruyn de Ouboter, and K. W. Taconis. A Realization of a London-Clarke-Mendoza Type Refrigerator.
[32] http://ltl.tkk.fi/research/theory/mixture.html
[33] Kaveh Ahadi, Luca Galletti, Yuntian Li, Salva Salmani-Rezaie, Wangzhou Wu and Susanne Stemmer, Sci. Adv. 5, 4 (2019).
[34] V. Celebonovic, J. Pesic, R. Gajic, BVasic and A. Matkovic, J. Appl. Phys. 125, 154301 (2019).
[35] R. A. Klemn, A. Luther and M.R. Beasley phys. Rev. B 12, 3 (1975)
[36] M. Tinkham, Introduction to Superconductivity 2nd edn (New York: McGraw-Hill), 1996.
[37] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Xeitler, K. T. Law, J. T. Ye Science, 350, 6266 (2015).
[38] Hyoungso Nam, Hua Chen, Philip W. Asams, Syu-You Guan, Tien Ming Chuang, Chia-Sheng Chang, Allan H. MacDonald and Chih-Kang Shih, Nat. Commun. 9, 5431 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/697-
dc.description.abstract在這篇論文中,我將會報告利用分子束外延(molecular beam epitaxy)成長在砷化鎵(GaAs)上的鋁奈米薄膜(Al nanofilms)在低溫下表現的傳輸特性。利用此方法所成長的鋁奈米薄膜比傳統的鋁塊材擁有較高的臨界溫度與臨界磁場。特別的是,在這樣的鋁奈米薄膜中觀察到拓撲相變(topological transition),這表示我們的鋁奈米薄膜可是被視為二維系統。另外也發現在最薄的樣品中(3-nm)平行的上臨界磁場(upper critical magnetic field)能夠超過包立順磁極限(Pauli paramagnetic limit)。zh_TW
dc.description.abstractIn this thesis, I shall report extensive transport measurements on aluminum (Al) nanofilms (as-grown thickness ranging from 3 nm to 4 nm) grown on GaAs by molecular beam epitaxy (MBE). Such MBE-grown Al nanofilms have a higher superconductor transition temperature (around 2.17 K, depending on the thickness) compared to that of bulk aluminum (1.2 K). In particular, I observed the topological transition of Berezinskii-Kosterlitz-Thouless (BKT) transition which implies two-dimensional superconductivity in our system. I also found that the upper critical field goes beyond the Pauli paramagnetic limit in the thinnest sample (3-nm thick).en
dc.description.provenanceMade available in DSpace on 2021-05-11T04:59:46Z (GMT). No. of bitstreams: 1
ntu-108-R06222021-1.pdf: 3072254 bytes, checksum: 7333356c72b3229bc8e3fa520e9678d2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES x
Chapter 1 Introduction 1
REFERENCES 2
Chapter 2 Superconductivity 3
2.1 Two-fluid Model 4
2.2 London Equations 4
2.3 BCS Theory 5
2.3.1 Cooper Pair 6
2.3.2 Energy Gap 7
2.4 Ginzburg-Landau Theory 7
2.4.1 Magnetic Field Dependence of Temperature 8
2.4.2 The GL Equation 10
2.4.3 The GL Penetration Depth and Coherence Length 11
2.5 Type-I and Type-II Superconductor 13
2.5.1 Magnetization of the Superconductor 13
2.5.2 Dimensionless GL Parameter κ 15
2.6 Upper Critical Field Limits 16
2.6.1 Orbital Limit 17
2.6.2 Spin Paramagnetic Limit 18
2.7 Spin-orbit Interaction 19
2.7.1 Spin-orbit interaction 19
2.7.2 Elliot-Yafet mechanism 20
2.8 BKT Transition 21
REFERENCES 22
Chapter 3 Device fabrication and Measurement Technique 24
3.1 Device Fabrication 24
3.1.1 Molecular-beam Epitaxy 24
3.1.2 Fabrication Processes 25
3.2 Low-temperature System 28
3.3 Four-terminal DC Measurements 29
REFERENCES 31
Chapter 4 Results and Discussion 32
4.1 Electronic Properties of MBE-Grown Al Nanofilms 32
4.2 Magneto-transport in MBE-Grown Al Nanofilms 40
4.3 Analysis and Discussion 44
REFERENCES 53
Chapter 5 Conclusion 54
Chapter 6 Future Work 57
REFERENCES 58
dc.language.isoen
dc.subject拓撲相變zh_TW
dc.subject超導電性zh_TW
dc.subject鋁奈米薄膜zh_TW
dc.subject包立順磁極限zh_TW
dc.subjectPauli paramagnetic limiten
dc.subjectSuperconductivityen
dc.subjectAluminum nanofilmsen
dc.subjectTopological transitionen
dc.title分子束磊晶成長鋁奈米薄膜中之拓撲相變與違反包立順磁極限之現象zh_TW
dc.titleTopological transition and violation of Pauli paramagnetic limit in Al nanofilms grown by molecular beam epitaxyen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立民(Li-Min Wang),林聖迪(Sheng-Di Lin)
dc.subject.keyword超導電性,鋁奈米薄膜,包立順磁極限,拓撲相變,zh_TW
dc.subject.keywordSuperconductivity,Aluminum nanofilms,Pauli paramagnetic limit,Topological transition,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201901959
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved