請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Ching-Chen Yeh | en |
| dc.contributor.author | 葉勁辰 | zh_TW |
| dc.date.accessioned | 2021-05-11T04:59:46Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.available | 2021-05-11T04:59:46Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-06 | |
| dc.identifier.citation | [1] M. I. Katsnelson and K. S. Novoselov, Solid State Communications, 143, 3 (2007).
[2] Y.-T. Fan, M.-C. Lo, C.-C. Wu, P.-Y. Chen, J.-S. Wu, C.-T. Liang, and S.-D. Lin, AIP Adv. 7, 075213 (2017). [3] Albert F. Rigosi, Chieh-I Liu, Bi-Yi Wu, Hsin-Yen Lee, Mattias Kruskopf, Yanfei Yang, Heather M. Hill, Jiuning Hu, Emily G. Bittle, Jan Obrzut, Angela R. Hight Walker, Randolph E. Elmquist, and David B. Newell, Microelectronic Engineering 194, 51 (2018). [4] A. M. Clogston, Phys. Rev. Lett. 9, 6 (1962). [5] B. S. Chandrasekhat, Appl. Phys. Lett. 1, 1 (1962). [6] H. K. Onnes, Leiden Comm. (1911). [7] W. Meissner and R. Ochsenfeld, Naturwiss, 21, 787 (1933). [8] C. J. Gorter and H. B. G. Casimir, Phys, 1, 306 (1934a) [9] F. London and H. London, Proc. R. Soc., A, 155, 71 (1935). [10] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 5 (1957). [11] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957). [12] Leon Cooper, Phys. Rev. 104, 1189 (1956). [13] Alan M. J. Kadin, Supercond. Nov. Mag. 20(4), 285 (2005) [14] Shigeji Fujita; Kei Ito; and Slavador Godoy, (2009). Quantum Theory of Conducting Matter. Springer Publishing. pp. 15–27. [15] Richard P. Feynman, Robert Leighton; and Matthew Sands. Lectures on Physics, Vol.3. Addison–Wesley. pp. 21–7, 8. (1965) [16] W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956). [17] V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys. (USSR) 20, 1064 (1950). [18] L. P. Gor’kov Sov. Phys. JETP 36, 6 (1959) [19] A. A. Abrikosov, J. Exp. Theor. Phys. (USSR) 32, 1442 (1957). [20] N. R. Werthamer, E. Helfand and P. C. Honenberg, Phys. Rev. 147, 295 (1966)) [21] http://web.mit.edu/6.763/www/FT03/Lectures/Lecture17.pdf [22] J. L. Zhang, L. Jiao, Y. Chen, H. Q. Yuan, Phys. Condens. Matter. 6, 463 (2012). [23] R. J. Elliott Phys. Re. 96 266 (1954). [24] S.-T. Lo, S.-W. Lin, Y.-T. Wang, S.-D. Lin and C.-T. Liang, Sci. Rep. 4, 5438 (2014). [25] A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 44, 291 (1980). [26] N. D. Mermin and H. Wanger, Phys. Rev. Lett. 17, 1307 (1966). [27] M. R. Beasley, J. E. Mooij and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979). [28] D. S. Fisher, M. P. Fisher, and D. A. Huse, Phys. Rev. B 43, 1130 (1991). [29] Guan-Ming Su, “Studies of Kosterlitz–Thouless Transition: Numeric Simulation of the 2D XY Model and 2D Superconductivity in 4-nm Aluminum Nano-Film,” M.S. thesis, National Taiwan University, Taiwan, 2018. [30] A. Y. Cho and J. R. Arthur Prog. Solid State Chem. 10, 157 (1975). [31] P. Das R. Bruyn de Ouboter, and K. W. Taconis. A Realization of a London-Clarke-Mendoza Type Refrigerator. [32] http://ltl.tkk.fi/research/theory/mixture.html [33] Kaveh Ahadi, Luca Galletti, Yuntian Li, Salva Salmani-Rezaie, Wangzhou Wu and Susanne Stemmer, Sci. Adv. 5, 4 (2019). [34] V. Celebonovic, J. Pesic, R. Gajic, BVasic and A. Matkovic, J. Appl. Phys. 125, 154301 (2019). [35] R. A. Klemn, A. Luther and M.R. Beasley phys. Rev. B 12, 3 (1975) [36] M. Tinkham, Introduction to Superconductivity 2nd edn (New York: McGraw-Hill), 1996. [37] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Xeitler, K. T. Law, J. T. Ye Science, 350, 6266 (2015). [38] Hyoungso Nam, Hua Chen, Philip W. Asams, Syu-You Guan, Tien Ming Chuang, Chia-Sheng Chang, Allan H. MacDonald and Chih-Kang Shih, Nat. Commun. 9, 5431 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/697 | - |
| dc.description.abstract | 在這篇論文中,我將會報告利用分子束外延(molecular beam epitaxy)成長在砷化鎵(GaAs)上的鋁奈米薄膜(Al nanofilms)在低溫下表現的傳輸特性。利用此方法所成長的鋁奈米薄膜比傳統的鋁塊材擁有較高的臨界溫度與臨界磁場。特別的是,在這樣的鋁奈米薄膜中觀察到拓撲相變(topological transition),這表示我們的鋁奈米薄膜可是被視為二維系統。另外也發現在最薄的樣品中(3-nm)平行的上臨界磁場(upper critical magnetic field)能夠超過包立順磁極限(Pauli paramagnetic limit)。 | zh_TW |
| dc.description.abstract | In this thesis, I shall report extensive transport measurements on aluminum (Al) nanofilms (as-grown thickness ranging from 3 nm to 4 nm) grown on GaAs by molecular beam epitaxy (MBE). Such MBE-grown Al nanofilms have a higher superconductor transition temperature (around 2.17 K, depending on the thickness) compared to that of bulk aluminum (1.2 K). In particular, I observed the topological transition of Berezinskii-Kosterlitz-Thouless (BKT) transition which implies two-dimensional superconductivity in our system. I also found that the upper critical field goes beyond the Pauli paramagnetic limit in the thinnest sample (3-nm thick). | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T04:59:46Z (GMT). No. of bitstreams: 1 ntu-108-R06222021-1.pdf: 3072254 bytes, checksum: 7333356c72b3229bc8e3fa520e9678d2 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 Introduction 1 REFERENCES 2 Chapter 2 Superconductivity 3 2.1 Two-fluid Model 4 2.2 London Equations 4 2.3 BCS Theory 5 2.3.1 Cooper Pair 6 2.3.2 Energy Gap 7 2.4 Ginzburg-Landau Theory 7 2.4.1 Magnetic Field Dependence of Temperature 8 2.4.2 The GL Equation 10 2.4.3 The GL Penetration Depth and Coherence Length 11 2.5 Type-I and Type-II Superconductor 13 2.5.1 Magnetization of the Superconductor 13 2.5.2 Dimensionless GL Parameter κ 15 2.6 Upper Critical Field Limits 16 2.6.1 Orbital Limit 17 2.6.2 Spin Paramagnetic Limit 18 2.7 Spin-orbit Interaction 19 2.7.1 Spin-orbit interaction 19 2.7.2 Elliot-Yafet mechanism 20 2.8 BKT Transition 21 REFERENCES 22 Chapter 3 Device fabrication and Measurement Technique 24 3.1 Device Fabrication 24 3.1.1 Molecular-beam Epitaxy 24 3.1.2 Fabrication Processes 25 3.2 Low-temperature System 28 3.3 Four-terminal DC Measurements 29 REFERENCES 31 Chapter 4 Results and Discussion 32 4.1 Electronic Properties of MBE-Grown Al Nanofilms 32 4.2 Magneto-transport in MBE-Grown Al Nanofilms 40 4.3 Analysis and Discussion 44 REFERENCES 53 Chapter 5 Conclusion 54 Chapter 6 Future Work 57 REFERENCES 58 | |
| dc.language.iso | en | |
| dc.subject | 拓撲相變 | zh_TW |
| dc.subject | 超導電性 | zh_TW |
| dc.subject | 鋁奈米薄膜 | zh_TW |
| dc.subject | 包立順磁極限 | zh_TW |
| dc.subject | Pauli paramagnetic limit | en |
| dc.subject | Superconductivity | en |
| dc.subject | Aluminum nanofilms | en |
| dc.subject | Topological transition | en |
| dc.title | 分子束磊晶成長鋁奈米薄膜中之拓撲相變與違反包立順磁極限之現象 | zh_TW |
| dc.title | Topological transition and violation of Pauli paramagnetic limit in Al nanofilms grown by molecular beam epitaxy | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王立民(Li-Min Wang),林聖迪(Sheng-Di Lin) | |
| dc.subject.keyword | 超導電性,鋁奈米薄膜,包立順磁極限,拓撲相變, | zh_TW |
| dc.subject.keyword | Superconductivity,Aluminum nanofilms,Pauli paramagnetic limit,Topological transition, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201901959 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
