Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文(Chia-Wen Wu)
dc.contributor.authorYu-Te Liaoen
dc.contributor.author廖祐德zh_TW
dc.date.accessioned2021-06-17T03:27:37Z-
dc.date.available2023-05-31
dc.date.copyright2018-05-31
dc.date.issued2018
dc.date.submitted2018-04-03
dc.identifier.citation[1] A. A. Herzing, M. Watanabe, J. K. Edwards, M. Conte, Z. R. Tang, G. J. Hutchings and C. J. Kiely, Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope, Faraday Discuss 2008, 138, 337.
[2] R. Sahu and P. L. Dhepe, Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts, React Kinet Mech Cat 2014, 112, 173.
[3] G. Bond and D. Thompson, Formulation of mechanisms for gold-catalysed reactions, Gold Bull 2009, 42, 247.
[4] A. Haruta, When gold is not noble: Catalysis by nanoparticles, Chem Rec 2003, 3, 75.
[5] Z. L. Wu, S. H. Zhou, H. G. Zhu, S. Dai and S. H. Overbury, Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation, Chem Commun 2008, 3308.
[6] A. Gaona, U. Diaz and A. Corma, Functional acid and base hybrid catalysts organized by associated (organo)aluminosilicate layers for C-C bond forming reactions and tandem processes, Chem Mater 2017, 29, 1599.
[7] X. Y. Wan, C. M. Zhou, J. S. Chen, W. P. Deng, Q. H. Zhang, Y. H. Yang and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles, ACS Catal 2014, 4, 2175.
[8] K. Bhattacharyya, A. Danon, B. K. Vijayan, K. A. Gray, P. C. Stair and E. Weitz, Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FTIR study, J Phys Chem C 2013, 117, 12661.
[9] B. Xu, C. Sievers, S. B. Hong, R. Prins and J. A. van Bokhoven, Catalytic activity of Bronsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites, J Catal 2006, 244, 163.
[10] W. X. Chen, J. Y. Lee and Z. L. Liu, Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications, Chem Commun 2002, 2588.
[11] C. M. Yang, M. Kalwei, F. Schuth and K. J. Chao, Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation, Appl Catal a-Gen 2003, 254, 289.
[12] K. B. Lee, S. M. Lee and J. Cheon, Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration, Adv Mater 2001, 13, 517.
[13] T. Ishida, M. Nagaoka, T. Akita and M. Haruta, Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols, Chem-Eur J 2008, 14, 8456.
[14] Z. J. Wang, Y. B. Xie and C. J. Liu, Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15, J Phys Chem C 2008, 112, 19818.
[15] J. H. Park, S. K. Kim, H. S. Kim, Y. J. Cho, J. Park, K. E. Lee, C. W. Yoon, S. W. Nam and S. O. Kang, Convenient metal embedment into mesoporous silica channels for high catalytic performance in AB dehydrogenation, Chem Commun 2013, 49, 10832.
[16] A. Sandoval, A. Aguilar, C. Louis, A. Traverse and R. Zanella, Bimetallic Au-Ag/TiO2 catalyst prepared by deposition-precipitation: High activity and stability in CO oxidation, J Catal 2011, 281, 40.
[17] R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings and F. Besenbacher, Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles, ACS Nano 2012, 6, 6284.
[18] I. Gandarias, P. J. Miedziak, E. Nowicka, M. Douthwaite, D. J. Morgan, G. J. Hutchings and S. H. Taylor, Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions, Chemsuschem 2015, 8, 473.
[19] A. N. Grace and K. Pandian, One pot synthesis of polymer protected gold nanoparticles and nanoprisms in glycerol, Colloid Surface A 2006, 290, 138.
[20] F. Ke, J. F. Zhu, L. G. Qiu and X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance, Chem Commun 2013, 49, 1267.
[21] P. Hu, J. Zhuang, L. Y. Chou, H. K. Lee, X. Y. Ling, Y. C. Chuang and C. K. Tsung, Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures, J Am Chem Soc 2014, 136, 10561.
[22] F. K. Shieh, S. C. Wang, C. I. Yen, C. C. Wu, S. Dutta, L. Y. Chou, J. V. Morabito, P. Hu, M. H. Hsu, K. C. W. Wu and C. K. Tsung, Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal-organic framework microcrystals, J Am Chem Soc 2015, 137, 4276.
[23] H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science 2013, 341, 974.
[24] D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev. 2009, 38, 1257.
[25] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 2010, 329, 424.
[26] W. G. Lu, Z. W. Wei, Z. Y. Gu, T. F. Liu, J. Park, J. Park, J. Tian, M. W. Zhang, Q. Zhang, T. Gentle, M. Bosch and H. C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design, Chem Soc Rev 2014, 43, 5561.
[27] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, Highly controlled acetylene accommodation in a metal-organic microporous material, Nature 2005, 436, 238.
[28] B. L. Chen, C. D. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi and S. Dai, A microporous metal-organic framework for gas-chromatographic separation of alkanes, Angew Chem Int Edit 2006, 45, 1390.
[29] J. Della Rocca, D. M. Liu and W. B. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Accounts Chem Res 2011, 44, 957.
[30] P. H. Ling, J. P. Lei, L. Zhang and H. X. Ju, Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA, Anal Chem 2015, 87, 3957.
[31] J. Yang, F. J. Zhang, H. Y. Lu, X. Hong, H. L. Jiang, Y. Wu and Y. D. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene, Angew Chem Int Edit 2015, 54, 10889.
[32] H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 1999, 402, 276.
[33] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n), Science 1999, 283, 1148.
[34] C. Rosler and R. A. Fischer, Metal-organic frameworks as hosts for nanoparticles, CryStengComm 2015, 17, 199.
[35] S. Hermes, M. K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer and R. A. Fischer, Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew Chem Int Edit 2005, 44, 6237.
[36] D. Esken, S. Turner, O. I. Lebedev, G. Van Tendeloo and R. A. Fischer, Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs, Chem. Mater. 2010, 22, 6393.
[37] J. Hermannsdorfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S. Kummel and R. Kempe, Ni/Pd@MIL-101: synergistic catalysis with cavity-conform Ni/Pd nanoparticles, Angew Chem Int Edit 2012, 51, 11473.
[38] H. L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai and Q. Xu, Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework, J Am Chem Soc 2009, 131, 11302.
[39] H. L. Liu, Y. L. Liu, Y. W. Li, Z. Y. Tang and H. F. Jiang, Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols, J Phys Chem C 2010, 114, 13362.
[40] A. Aijaz, T. Akita, N. Tsumori and Q. Xu, Metal-organic framework-immobilized polyhedral metal nanocrystals: Reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity, J Am Chem Soc 2013, 135, 16356.
[41] G. Lu, S. Z. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Y. Qi, Y. Wang, X. Wang, S. Y. Han, X. G. Liu, J. S. DuChene, H. Zhang, Q. C. Zhang, X. D. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. H. Yang, J. T. Hupp and F. W. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nat Chem 2012, 4, 310.
[42] P. Wang, J. Zhao, X. B. Li, Y. Yang, Q. H. Yang and C. Li, Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions, Chem Commun 2013, 49, 3330.
[43] A. Aijaz and Q. Xu, Catalysis with metal nanoparticles immobilized within the pores of metal-organic frameworks, J Phys Chem Lett 2014, 5, 1400.
[44] S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D. N. Dybtsev and K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun. 2012, 48, 7447.
[45] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi and H. Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes, Adv Funct Mater 2008, 18, 3506.
[46] D. Feng, Y. Y. Lv, Z. X. Wu, Y. Q. Dou, L. Han, Z. K. Sun, Y. Y. Xia, G. F. Zheng and D. Y. Zhao, Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices, J Am Chem Soc 2011, 133, 15148.
[47] R. T. Wang, P. Y. Wang, X. B. Yan, J. W. Lang, C. Peng and Q. J. Xue, Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance, ACS Appl Mater Inter 2012, 4, 5800.
[48] K. L. Hong, L. Qie, R. Zeng, Z. Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. J. Fan, W. X. Zhang and Y. H. Huang, Biomass derived hard carbon used as a high performance anode material for sodium ion batteries, J Mater Chem A 2014, 2, 12733.
[49] D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew Chem Int Edit 2008, 47, 373.
[50] R. Ryoo, S. H. Joo and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J Phys Chem B 1999, 103, 7743.
[51] J. Rodriguez-Mirasol, T. Cordero, L. R. Radovic and J. J. Rodriguez, Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template, Chem Mater 1998, 10, 550.
[52] J. Tang, R. R. Salunkhe, H. B. Zhang, V. Malgras, T. Ahamad, S. M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J. H. Kim and Y. Yamauchi, Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons, Sci Rep-Uk 2016, 6.
[53] S. J. Yang, T. Kim, J. H. Im, Y. S. Kim, K. Lee, H. Jung and C. R. Park, MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity, Chem Mater 2012, 24, 464.
[54] J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa and Y. Yamauchi, Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon, J Am Chem Soc 2015, 137, 1572.
[55] S. H. Liu, Z. Y. Wang, S. Zhou, F. J. Yu, M. Z. Yu, C. Y. Chiang, W. Z. Zhou, J. J. Zhao and J. S. Qiu, Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution, Adv Mater 2017, 29.
[56] J. A. Hu, H. L. Wang, Q. M. Gao and H. L. Guo, Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors, Carbon 2010, 48, 3599.
[57] H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Q. Zong and Q. Xu, From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake, J Am Chem Soc 2011, 133, 11854.
[58] B. Liu, H. Shioyama, T. Akita and Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J Am Chem Soc 2008, 130, 5390.
[59] J. S. Li, S. L. Li, Y. J. Tang, K. Li, L. Zhou, N. Kong, Y. Q. Lan, J. C. Bao and Z. H. Dai, Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction, Sci Rep-Uk 2014, 4.
[60] Y. Fu, Y. Huang, Z. H. Xiang, G. Q. Liu and D. P. Cao, Phosphorous-Nitrogen-Codoped Carbon Materials Derived from Metal-Organic Frameworks as Efficient Electrocatalysts for Oxygen Reduction Reactions, Eur J Inorg Chem 2016, 2100.
[61] H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature 2004, 427, 523.
[62] W. Chaikittisilp, M. Hu, H. J. Wang, H. S. Huang, T. Fujita, K. C. W. Wu, L. C. Chen, Y. Yamauchi and K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem Commun 2012, 48, 7259.
[63] N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito and Y. Yamauchi, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals, Chem Commun 2013, 49, 2521.
[64] N. L. Liu, S. Dutta, R. R. Salunkhe, T. Ahamad, S. M. Alshehri, Y. Yamauchi, C. H. Hou and K. C. W. Wu, ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions, Sci Rep-Uk 2016, 6.
[65] C. V. Nguyen, Y. T. Liao, T. C. Kang, J. E. Chen, T. Yoshikawa, Y. Nakasaka, T. Masuda and K. C. W. Wu, A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion, Green Chem. 2016, 18, 5957.
[66] T. Sharifi, G. Hu, X. E. Jia and T. Wagberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes, ACS Nano 2012, 6, 8904.
[67] J. Tang, T. Wang, X. Sun, Y. X. Guo, H. R. Xue, H. Guo, M. Z. Liu, X. X. Zhang and J. P. He, Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance, Micropor Mesopor Mat 2013, 177, 105.
[68] Z. L. Schaefer, M. L. Gross, M. A. Hickner and R. E. Schaak, Uniform Hollow Carbon Shells: Nanostructured Graphitic Supports for Improved Oxygen-Reduction Catalysis, Angew Chem Int Edit 2010, 49, 7045.
[69] W. Xia, J. H. Zhu, W. H. Guo, L. An, D. G. Xia and R. Q. Zou, Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction, J Mater Chem A 2014, 2, 11606.
[70] W. Zhang, X. F. Jiang, X. B. Wang, Y. V. Kaneti, Y. X. Chen, J. Liu, J. S. Jiang, Y. Yamauchi and M. Hu, Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals, Angew Chem Int Edit 2017, 56, 8435.
[71] P. Pachfule, D. Shinde, M. Majumder and Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework, Nat Chem 2016, 8, 718.
[72] Y. F. Yang, S. Jin, Z. Zhang, Z. Z. Du, H. R. Liu, J. Yang, H. X. Xu and H. X. Ji, Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries, ACS Appl Mater Inter 2017, 9, 14180.
[73] W. Zhang, X. F. Jiang, Y. Y. Zhao, A. Carne-Sanchez, V. Malgras, J. Kim, J. H. Kim, S. B. Wang, J. Liu, J. S. Jiang, Y. Yamauchi and M. Hu, Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis, Chem Sci 2017, 8, 3538.
[74] L. F. Chen, Y. Lu, L. Yu and X. W. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors, Energ Environ Sci 2017, 10, 1777.
[75] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, Cattech 2002, 6, 102.
[76] Y. Z. Chen, G. R. Cai, Y. M. Wang, Q. Xu, S. H. Yu and H. L. Jiang, Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability, Green Chem 2016, 18, 1212.
[77] X. L. Li, B. Y. Zhang, Y. H. Fang, W. J. Sun, Z. Y. Qi, Y. C. Pei, S. Y. Qi, P. Y. Yuan, X. C. Luan, T. W. Goh and W. Y. Huang, Metal-Organic-Framework-Derived Carbons: Applications as Solid-Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis, Chem-Eur. J. 2017, 23, 4266.
[78] X. L. Li, W. Zhang, Y. S. Liu and R. Li, Palladium Nanoparticles Immobilized on Magnetic Porous Carbon Derived from ZIF-67 as Efficient Catalysts for the Semihydrogenation of Phenylacetylene under Extremely Mild Conditions, Chemcatchem 2016, 8, 1111.
[79] W. H. Dong, L. Zhang, C. H. Wang, C. Feng, N. Z. Shang, S. T. Gao and C. Wang, Palladium nanoparticles embedded in metal-organic framework derived porous carbon: synthesis and application for efficient Suzuki-Miyaura coupling reactions, RSC Adv 2016, 6, 37118.
[80] Y. J. Chen, S. F. Ji, Y. G. Wang, J. C. Dong, W. X. Chen, Z. Li, R. A. Shen, L. R. Zheng, Z. B. Zhuang, D. S. Wang and Y. D. Li, Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction, Angew Chem Int Edit 2017, 56, 6937.
[81] X. Wang, W. X. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. X. Ju, J. C. Dong, L. R. Zheng, W. S. Yan, X. S. Zheng, Z. J. Li, X. Q. Wang, J. Yang, D. S. He, Y. Wang, Z. X. Deng, Y. E. Wu and Y. D. Li, Uncoordinated Amine Groups of Metal-Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline, J Am Chem Soc 2017, 139, 9419.
[82] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst, Nat Energy 2016, 1.
[83] S. H. Wang, M. Q. Chen, Y. Y. Xie, Y. N. Fan, D. W. Wang, J. J. Jiang, Y. G. Li, H. Grutzmacher and C. Y. Su, Nanoparticle Cookies Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries, Small 2016, 12, 2365.
[84] C. T. Wei, X. Li, F. G. Xu, H. L. Tan, Z. Li, L. L. Sun and Y. H. Song, Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor, Anal Methods-Uk 2014, 6, 1550.
[85] S. L. Zhao, H. J. Yin, L. Du, L. C. He, K. Zhao, L. Chang, G. P. Yin, H. J. Zhao, S. Q. Liu and Z. Y. Tang, Carbonized Nanoscale Metal-Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction, ACS Nano 2014, 8, 12660.
[86] S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park and C. R. Park, Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal-Organic Framework, J Am Chem Soc 2013, 135, 7394.
[87] P. Q. Yin, T. Yao, Y. Wu, L. R. Zheng, Y. Lin, W. Liu, H. X. Ju, J. F. Zhu, X. Hong, Z. X. Deng, G. Zhou, S. Q. Wei and Y. D. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts, Angew Chem Int Edit 2016, 55, 10800.
[88] Y. T. Liao, C. W. Huang, C. H. Liao, J. C. S. Wu and K. C. W. Wu, Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting, Appl Energ 2012, 100, 75.
[89] A. S. Nugraha, C. L. Li, J. Bo, M. Iqbal, S. M. Alshehri, T. Ahamad, V. Malgras, Y. Yamauchi and T. Asahi, Block-Copolymer-Assisted Electrochemical Synthesis of Mesoporous Gold Electrodes: Towards a Non-Enzymatic Glucose Sensor, Chemelectrochem 2017, 4, 2571.
[90] L. Wang and Y. Yamauchi, Metallic Nanocages: Synthesis of Bimetallic Pt-Pd Hollow Nanoparticles with Dendritic Shells by Selective Chemical Etching, J Am Chem Soc 2013, 135, 16762.
[91] M. Iqbal, C. L. Li, K. Wood, B. Jiang, T. Takei, O. Dag, D. Baba, A. S. Nugraha, T. Asahi, A. E. Whitten, M. S. A. Hossain, V. Malgras and Y. Yamauchi, Continuous Mesoporous Pd Films by Electrochemical Deposition in Nonionic Micellar Solution, Chem. Mater. 2017, 29, 6405.
[92] W. H. Li, X. F. Wu, H. D. Liu, J. Y. Chen, W. X. Tang and Y. F. Chen, Hierarchical hollow ZnO cubes constructed using self-sacrificial ZIF-8 frameworks and their enhanced benzene gas-sensing properties, New J Chem 2015, 39, 7060.
[93] L. He, L. Li, T. T. Wang, H. Gao, G. Z. Li, X. T. Wu, Z. M. Su and C. G. Wang, Fabrication of Au/ZnO nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities, Dalton T 2014, 43, 16981.
[94] M. Wang, X. D. Jiang, J. J. Liu, H. L. Guo and C. G. Liu, Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method, Electrochim Acta 2015, 182, 613.
[95] R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. L. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang and Y. Z. Huang, Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability, Small 2014, 10, 1932.
[96] A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan and S. Ogale, Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries, Nano Energy 2013, 2, 1158.
[97] Z. Xiu, M. H. Alfaruqi, J. Gim, J. Song, S. Kim, T. V. Thi, P. T. Duong, J. P. Baboo, V. Mathew and J. Kim, Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries, Chem Commun 2015, 51, 12274.
[98] L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng and X. W. Lou, Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties, J Am Chem Soc 2012, 134, 17388.
[99] M. B. Zakaria, M. Hu, N. Hayashi, Y. Tsujimoto, S. Ishihara, M. Imura, N. Suzuki, Y. Y. Huang, Y. Sakka, K. Ariga, K. C. W. Wu and Y. Yamauchi, Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase, Eur J Inorg Chem 2014, 2014, 1137.
[100] L. Zhang, H. B. Wu and X. W. Lou, Metal-Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity, J Am Chem Soc 2013, 135, 10664.
[101] D. K. Lee, J. H. Park, J. Il Choi, Y. Lee, S. J. Kim, G. H. Lee, Y. H. Kim and J. K. Kang, A facile synthesis of multi metal-doped rectangular ZnO nanocrystals using a nanocrystalline metal-organic framework template, Nanoscale 2014, 6, 10995.
[102] H. Yu, H. S. Fan, B. L. Yadian, H. T. Tan, W. L. Liu, H. H. Hng, Y. Z. Huang and Q. Y. Yan, General Approach for MOF-Derived Porous Spinel AFe(2)O(4) Hollow Structures and Their Superior Lithium Storage Properties, ACS Appl Mater Inter 2015, 7, 26751.
[103] F. D. Qu, H. F. Jiang and M. H. Yang, Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties, Nanoscale 2016, 8, 16349.
[104] H. Guo, T. T. Li, W. W. Chen, L. X. Liu, X. J. Yang, Y. P. Wang and Y. C. Guo, General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage, Nanoscale 2014, 6, 15168.
[105] J. Xu, S. C. Liu and Y. Liu, Co3O4/ZnO nanoheterostructure derived from core-shell ZIF-8@ZIF-67 for supercapacitors, RSC Adv 2016, 6, 52137.
[106] R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim and Y. Yamauchi, Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework, ACS Nano 2015, 9, 6288.
[107] T. Wang, L. Shi, J. Tang, V. Malgras, S. Asahina, G. G. Liu, H. B. Zhang, X. G. Meng, K. Chang, J. P. He, O. Terasaki, Y. Yamauchi and J. H. Ye, A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction, Nanoscale 2016, 8, 6712.
[108] L. Y. Chen, X. D. Chen, H. L. Liu, C. H. Bai and Y. W. Li, One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program, J Mater Chem A 2015, 3, 15259.
[109] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction, 2017, 56, 1.
[110] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction, Angew Chem Int Ed 2017, 56, 1.
[111] C. W. Yi, K. Luo, T. Wei and D. W. Goodman, The composition and structure of Pd-Au surfaces, J Phys Chem B 2005, 109, 18535.
[112] V. Ponec, Alloy catalysts: the concepts, Appl Catal a-Gen 2001, 222, 31.
[113] G. J. Hutchings and C. J. Kiely, Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition, Accounts Chem Res 2013, 46, 1759.
[114] L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely and G. J. Hutchings, Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles, Science 2011, 331, 195.
[115] R. C. Tiruvalam, J. C. Pritchard, N. Dimitratos, J. A. Lopez-Sanchez, J. K. Edwards, A. F. Carley, G. J. Hutchings and C. J. Kiely, Aberration corrected analytical electron microscopy studies of sol-immobilized Au plus Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production, Faraday Discuss 2011, 152, 63.
[116] J. Pritchard, L. Kesavan, M. Piccinini, Q. He, R. Tiruvalam, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, J. K. Edwards, C. J. Kiely and G. J. Hutchings, Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization, Langmuir 2010, 26, 16568.
[117] M. Comotti, W. C. Li, B. Spliethoff and F. Schuth, Support effect in high activity gold catalysts for CO oxidation, J Am Chem Soc 2006, 128, 917.
[118] M. Sankar, Q. He, M. Morad, J. Pritchard, S. J. Freakley, J. K. Edwards, S. H. Taylor, D. J. Morgan, A. F. Carley, D. W. Knight, C. J. Kiely and G. J. Hutchings, Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method, ACS Nano 2012, 6, 6600.
[119] M. H. Oh, T. Yu, S. H. Yu, B. Lim, K. T. Ko, M. G. Willinger, D. H. Seo, B. H. Kim, M. G. Cho, J. H. Park, K. Kang, Y. E. Sung, N. Pinna and T. Hyeon, Galvanic replacement reactions in metal oxide nanocrystals, Science 2013, 340, 964.
[120] Y. Park, C. Lee, S. Ryu and H. Song, Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level, J Phys Chem C 2015, 119, 20125.
[121] R. G. Weiner, A. F. Smith and S. E. Skrabalak, Synthesis of hollow and trimetallic nanostructures by seed-mediated co-reduction, Chem Commun 2015, 51, 8872.
[122] S. P. Xu and D. D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited Cuo, Int J Hydrogen Energ 2009, 34, 6096.
[123] I. B. Fridleifsson, Geothermal energy for the benefit of the people, Renew Sust Energ Rev 2001, 5, 299.
[124] I. K. Kapdan and F. Kargi, Bio-hydrogen production from waste materials, Enzyme Microb Tech 2006, 38, 569.
[125] S. V. Mohan, Y. V. Bhaskar and P. N. Sarma, Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia, Water Res 2007, 41, 2652.
[126] S. E. Hosseini and M. A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renew Sust Energ Rev 2016, 57, 850.
[127] M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew Sust Energ Rev 2007, 11, 401.
[128] Y. H. Zhang, Z. R. Tang, X. Z. Fu and Y. J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?, ACS Nano 2010, 4, 7303.
[129] X. F. Chen, J. S. Zhang, X. Z. Fu, M. Antonietti and X. C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J Am Chem Soc 2009, 131, 11658.
[130] C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu and A. M. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J Phys Chem B 2006, 110, 4066.
[131] J. C. Yu, W. K. Ho, J. G. Yu, H. Yip, P. K. Wong and J. C. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ Sci Technol 2005, 39, 1175.
[132] Y. Ide, M. Torii and T. Sano, Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis, J Am Chem Soc 2013, 135, 11784.
[133] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 1972, 238, 37.
[134] Z. G. Zou, J. H. Ye, K. Sayama and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 2001, 414, 625.
[135] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 2001, 293, 269.
[136] R. M. N. Yerga, M. C. A. Galvan, F. del Valle, J. A. V. de la Mano and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, Chemsuschem 2009, 2, 471.
[137] H. Kato, K. Asakura and A. Kudo, Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure, J Am Chem Soc 2003, 125, 3082.
[138] M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energ Environ Sci 2009, 2, 1231.
[139] J. G. Yu, Y. R. Su and B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania, Adv Funct Mater 2007, 17, 1984.
[140] F. E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem Soc Rev 2013, 42, 2294.
[141] F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama and B. Ohtani, Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity, Chem Mater 2009, 21, 2601.
[142] C. G. Silva, R. Juarez, T. Marino, R. Molinari and H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water, J Am Chem Soc 2011, 133, 595.
[143] Y. C. Pu, G. M. Wang, K. D. Chang, Y. C. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. H. Lu, Y. X. Tong, J. Z. Zhang, Y. J. Hsu and Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting, Nano Lett 2013, 13, 3817.
[144] A. A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya and C. S. Gopinath, M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69780-
dc.description.abstract擔體型觸媒因其穩定及分離的方便性已被廣泛的運用在工業生產上;然而在生產擔體型觸媒的製程上容易產生:金屬觸媒的團聚、失活以及分布不均等問題。對此,我們提出一套新穎的方法”原位合成(de novo approach)”用以改善製備擔體型觸媒的程序並提升觸媒的效能。金屬有機骨架(MOFs)為一由金屬節點與有機配體所組成的孔洞材料,這類材料可做為自體模板,進一步轉化為多孔碳擔體以及多孔金屬氧化物擔體。第一章將介紹MOF以及擔體型觸媒的發展沿革,接著在二到五章中,我們將探討五種由鑲埋金屬的MOF所衍生而來的擔體型觸媒。我們成功的以原位合成法將不同金屬置入MOF內,並進一步轉化成鑲埋金屬粒子的多孔碳擔體以及多孔金屬氧化物。在不同的催化反應中,本研究所製備之觸媒都有著比後合成法製備之觸媒更優秀的催化能力,原因在於MOF提供一個均勻分布單體前驅物的環境,同時原位合成法可加強金屬與擔體間的作用,使催化效果往上提升。
首先,富含氮之8號類沸石咪唑酯結構(ZIF-8)作為碳擔體之模板,金與鈀的前驅物分別被導入建構中之ZIF-8內並進一步將之裂解成富含氮之金粒子鑲埋多孔碳球(Au@NC)以及均勻錨定鋅鈀合金之多孔碳球(PdZn@NC);本觸媒因其富含氮原子使得擔體在水中有良好的分散性,在硝基苯酚的還原中有著極佳的表現(specific conversion rate, SC: 1185 g-1s-1);此外,鋅與鈀的偕同效應使其在硝基苯酚的還原中也有著極佳的表現(SC: 1344 g-1s-1)。另一方面,我們同時將金與鈀導入ZIF-8,並裂解形成鑲埋金鈀合金之多孔碳球(AuPd@NC),此觸媒體現可調控組成比例之合金以及其在苯甲醇氧化反應中偕同效應所提升的反應效果。此研究結果收錄於第二章及第三章。
接著,銅前驅物被導入富含鈦之MOF (MIL-125)內,形成含銅之MIL-125;將銅導入MIL-125後,此複合物即藉由鍛燒的方式轉化成氧化銅嫁接之中孔洞錠型氧化鈦(CuO@MT)。光學分析顯示在二氧化鈦及氧化銅間有著強烈的介面電荷轉移現象,程序控溫分析以及X光吸收光譜則顯示部分銅原子鑲嵌在二氧化鈦的結構內部。而本觸媒憑藉著均勻分散的氧化銅及其與二氧化鈦的交互作用,而在光催化產氫上有著顯著的產氫效果(4760 mol h-1)。此研究結果收錄於第四章。
最後,金與鈀的前驅物同時導入富含鈷的67號類沸石咪唑酯結構(ZIF-67),並進一步鍛燒成金鈀合金鑲嵌之氧化鈷籠(AuPd@Co3O4)。X射線光子能譜的分析結果顯示本觸媒在金與氧化鈷的介面上帶有活性極高的一價金離子,而本觸媒與雙氧水結合轉化5-甲基糠醛(HMF)至2,5-呋喃二甲酸(FDCA),於常壓下一小時即完全反應並產生95%的FDCA,我們將此出類拔萃之催化效果歸因於金鈀合金的偕同效應、金及氧化鈷間的一價金離子以及雙氧水所產生的超氧化氫自由基所造成的結果。此研究結果收錄於第五章。
整體來說,我們利用原位合成法將各種不同的金屬前驅物導入MOF內,並將MOF進行鍛燒或裂解形成鑲埋金屬粒子的多孔碳擔體或多孔金屬氧化物擔體。原位合成法搭配MOF可有效提升擔體及金屬粒子間的作用,使擔體型觸媒的效果大幅提升。在未來,我們希望能將此法推廣到更多的組合上,藉由MOF本身的特性搭配金屬的效用,使材料的應用性更加廣泛。
zh_TW
dc.description.abstractSupported catalyst has been involved in most of industrial production owing to the benefits of long-term stability and easy recycle. The aggregation, deactivation and random distribution of metal nanoparticles during procedures are three issues in the preparation of supported metal catalysts. In this dissertation, a novel synthetic methodology called de novo approach is proposed to improve the quality of supported catalyst. Metal-organic frameworks (MOFs) are a porous structure composed of abundant metal joints and organic ligands which serve as self-template for porous carbon structure and metal oxide structure. We successfully use MOFs as the host and different metal precursors as metal sources to synthesize metal nanoparticles embedded MOF by de novo approach, and further converted the MOF composite into MOF-derived substrates with even metal nanoparticles distribution. The development of supported catalyst, MOFs and its derivatives are introduced in Chapter 1. Five kinds of metal nanoparticles embedded, MOF-derived supported catalyst would be discussed from Chapter 2 to Chapter 5. The synthesized supported catalysts showed apparently better performance on different catalytic reactions than those prepared by general post-treatment methods owing to the homogeneous substrate precursor on framework of MOF and strong interaction between metal composites and substrates contributed by de novo approach.
Nitrogen-rich zeolitic imidazolate framework-8 (ZIF-8) is selected as the host material, and Au and Pd precursors are introduced into ZIF-8 structure using de novo method to prepare Au@ZIF-8 and Pd@ZIF-8, respectively. After pyrolysis, ZIF-8 framework would become nitrogen-contained carbon framework and the resulting nitrogen doped, Au nanoparticles embedded nanoporous carbon nanoparticles (namely Au@NC) showed excellent performance (specific conversion rate [SC]: 1185 g-1s-1) on reduction of 4-nitrophenol due to N-rich carbon framework originated from 2-methylimidazole. Similarly, the Pd@ZIF-8 can be carbonized into even Pd-Zn anchored nanoporous carbon nanoparticles (namely PdZn@NC), which also shows good performance (SC:1344 g-1s-1) on reduction of 4-nitrophenol owing to N-rich carbon substrate and the synergistic effect of Pd-Zn alloy. Finally, Au and Pd co-loaded ZIF-8 is carbonized into Au-Pd alloy embedded nanoporous carbon nanoparticles (namely AuPd@NC), demonstrating tunable composition of alloy and synergistic effect of alloy on the oxidation of benzyl alcohol. The detail is included in chapter 2 and chapter 3.
Another MOF material (i.e. MIL-125) is selected as the host material because it contains titanium in the framework. Cu precursor is then introduced into MIL-125 by de novo method, and the synthesized copper ion encapsulated MIL-125 is calcined into CuO-loaded mesoporous titania tablets (namely CuO@MT). The results of H2-TPR and XAS show that part of CuO are inserted in TiO2 layer. The resulting CuO@MT catalysts demonstrate enhanced hydrogen evolution in methanol-containing solution (4760 mol h-1) owing to even distribution of CuO embedded in titania and effectively interfacial charge transfer between CuO and TiO2. The detail of experiment and discussion is included in chapter 3.
A Co-containing MOF (ZIF-67) is selected as the host material. Both Au and Pd precursors are introduced into ZIF-67 during assembly, and the resulting composites are calcined into Au-Pd alloy nanoparticles embedded cobalt oxide cages (namely AuPd@Co3O4). XPS spectrum shows the appearance of highly active Au+ on the interface of catalyst and substrate. The AuPd@Co3O4 cages are then applied as an efficient solid catalyst for H2O2-assisted conversion of hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The results show a high yield of FDCA (95%) is achieved under atmosphere in one hour, which is attributed to the hydroperoxyl radicals, synergistic effect of Au-Pd alloy, strong interaction between Co3O4 and Au nanoparticles. The detail of experiment and discussion is included in chapter 5.
In summary, metal nanoparticles encapsulated MOFs are synthesis with de novo approach, and the composites are further converted into supported catalyst. We demonstrate a reliable methodology (i.e. de novo approach) for synthesis of supported catalyst with enhanced activity on various catalytic reactions. The future works and perspective of this new method is described in Chapter 6.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:27:37Z (GMT). No. of bitstreams: 1
ntu-107-D02524005-1.pdf: 21703169 bytes, checksum: 2717f5595d6b575b613b5a91a19dab3a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Content
摘要 iii
Abstract v
Table of Content viii
List of Schemes xi
List of Figures xii
List of Tables xx
Chapter 1. Introduction 1
1.1. Preface 1
1.2. Overview 4
1.3. Synthesis of Supported Catalyst 9
1.3.1. Substrates 9
1.3.2. Immobilization of Catalyst 11
1.3.3. Metal Organic Frameworks and its derivatives 17
1.3.4. De Novo Approach 54
1.4. Synthesis of Alloy structure 59
1.5. Photocatalytic Hydrogen Evolution 63
1.5.1. Hydrogen evolution 63
1.5.2. Photocatalysis and Photocatalytic Water Splitting 65
1.6. Conversion of 5-hydroxymethyl-furural to 2,5-Furandicarboxylic Acid 70
1.6.1. Biomass 70
1.6.2. Oxidation of HMF to FDCA 72
Chapter 2. De Novo Synthesis of Au Nanoparticles-Embedded, Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability 75
2.1. Introduction 75
2.2. Experimental 77
2.2.1. Materials 77
2.2.2. Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) nanoparticles 77
2.2.3. De Novo Synthesis of Au Nanoparticles Embedded Nanoporous Carbon Nanoparticles 77
2.2.4. Post-synthesis of Au Nanoparticles on Activated Carbon 78
2.2.5. Characterization 79
2.2.6. Reduction of 4-Nitrophenol 80
2.3. Results and Discussion 81
2.3.1. Characterization of ZIF-8, Au@ZIF-8 and Au@NC 81
2.3.2. Reduction of 4-Nitrophenol 90
2.3.3. Surface Property and Composition of Au@NC, Au/AC and naked Au nanoparticles 93
2.4. Summary 98
Chapter 3. One-Pot Synthesis of Alloy Nanoparticles-Embedded Carbon Nanoparticles with de Novo Approach 99
3.1. Introduction 99
3.2. Experimental 102
3.2.1. Materials 102
3.2.2. De Novo Synthesis of Pd-Zn Alloy Anchored Nanoporous Carbon Nanoparticles 102
3.2.3. De Novo Synthesis of Au-Pd Alloy Embedded Nanoporous Carbon Nanoparticles 103
3.2.4. Characterization 104
3.2.5. Reduction of 4-Nitrophenol 104
3.2.6. Oxidation of Benzyl Alcohol 105
3.3. Results and Discussion 106
3.3.1. Characterization of Pd@ZIF-8 and PdZn@NC 106
3.3.2. Reduction of 4-Nitrophenol over Pd based Catalyst 114
3.3.3. Characterization of AuPd@ZIF-8 and AuPd@NC 117
3.3.4. Oxidation of Benzyl Alcohol over Various AuPd@NC 133
3.4. Summary 140
Chapter 4. Mesoporous TiO2 Embedded with a Uniform Distribution of CuO Exhibit Enhanced Charge Separation and Photocatalytic Efficiency 141
4.1. Introduction 141
4.2. Experimental 144
4.2.1. Materials 144
4.2.2. De Novo Synthesis of MOF-derived, Copper Oxide Grafted Mesoporous Titania Tablets (CuO@MTs) 144
4.2.3. Fabrication of CuO/TiO2 with Post-Synthesis 145
4.2.4. Characterization 145
4.2.5. Photocatalytic Hydrogen Evolution 147
4.3. Results and Discussion 149
4.3.1. Characterization of Cu-doped MIL-125 (Cu@MIL-125) and CuO@MT 149
4.3.2. Optical Analysis of CuO@MT 165
4.3.3. Photocatalytic Hydrogen Evolution from Methanol-containing Solution 169
4.4. Summary 177
Chapter 5. Engineering a Homogenous Alloy-Oxide Interface Derived from Metal-Organic Frameworks for Highly Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid 178
5.1. Introduction 178
5.2. Experimental 184
5.2.1. Materials 184
5.2.2. Synthesis of ZIF-67 Derived Au-Pd Alloy Embedded Cobalt Oxide Cages 184
5.2.3. Synthesis of Au Nanoparticles and Au-Pd Alloy Loaded Carbon Substrates 186
5.2.4. Synthesis of Au-Pd Alloy on Cobalt Oxide Nanoparticles with Post-Modification 187
5.2.5. Characterization 187
5.2.6. Hydrogen Peroxide-Assisted Oxidation of 5-Hydroxymethyl Furfural to 2,5-Furandicarboxylic Acid 188
5.2.7. Mechanism Analysis 189
5.2.8. Recycle Test of Catalyst 189
5.3. Results and Discussion 190
5.3.1. Characterization of Metal Embedded ZIF-67 and Metal Embedded Cobalt Oxide 190
5.3.2. Oxidation of HMF to FDCA with assistance of H2O2 222
5.3.3. Mechanism 230
5.3.4. Effect of Synthetic Methodology 241
5.4. Summary 244
Chapter 6. Conclusions 245
Reference 246
Appendix A Curriculum Vitae 268
Appendix B UiO-66, a Gatekeeper for Catalyst in Proton Exchange Membrane Fuel Cell 271
dc.language.isoen
dc.subject催化zh_TW
dc.subject原位合成zh_TW
dc.subject金屬有機框架zh_TW
dc.subject擔體型觸媒zh_TW
dc.subject介面zh_TW
dc.subjectde novoen
dc.subjectcatalysisen
dc.subjectinterfaceen
dc.subjectsupported catalysten
dc.subjectmetal-organic frameworksen
dc.title原位合成法製備含金屬奈米粒子之有機金屬骨架衍生擔體及其應用於多種催化反應zh_TW
dc.titleDe Novo Synthesis of Metal Nanoparticles Embedded Metal-
Organic Frameworks (MOFs) and their Derivatives for Catalytic Reactions
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳紀聖(Chi-Sheng Wu),徐振哲(Cheng-Che Hsu),謝發坤(Fa-Kuen Shieh),宗家洸(Chia-Kuang Tsung),Chengzhong Yu
dc.subject.keyword原位合成,金屬有機框架,擔體型觸媒,介面,催化,zh_TW
dc.subject.keywordde novo,metal-organic frameworks,supported catalyst,interface,catalysis,en
dc.relation.page299
dc.identifier.doi10.6342/NTU201800719
dc.rights.note有償授權
dc.date.accepted2018-04-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
21.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved