Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69766
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有花(You-Hua Chu)
dc.contributor.authorKuan-Chou Houen
dc.contributor.author侯冠州zh_TW
dc.date.accessioned2021-06-17T03:27:01Z-
dc.date.available2020-05-17
dc.date.copyright2018-05-17
dc.date.issued2018
dc.date.submitted2018-04-26
dc.identifier.citationAgertz O., Kravtsov A. V., Leitner S. N., Gnedin N. Y., 2013, ApJ, 770, 25
Alton P. B., Davies J. I., Bianchi S., 1999, A&A, 343, 51
Aoyama S., Hou K.-C., Shimizu I., Hirashita H., Todoroki K., Choi J.-H., Nagamine K., 2017, MNRAS, 466, 105
Asano R. S., Takeuchi T. T., Hirashita H., Inoue A. K., 2013a, Earth, Planets, and Space, 65, 213
Asano R. S., Takeuchi T. T., Hirashita H., Nozawa T., 2013b, MNRAS, 432, 637 Asano R. S., Takeuchi T. T., Hirashita H., Nozawa T., 2014, MNRAS, 440, 134 Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Baldry I. K., et al., 2012, MNRAS, 421, 621
Bekki K., 2013, MNRAS, 432, 2298
Bekki K., 2015, MNRAS, 449, 1625
Bekki K., Hirashita H., Tsujimoto T., 2015, ApJ, 810, 39
Bertoldi F., Carilli C. L., Cox P., Fan X., Strauss M. A., Beelen A., Omont A., Zylka R., 2003, A&A, 406, L55
Bianchi S., Schneider R., 2007, MNRAS, 378, 973
Blain A. W., Smail I., Ivison R. J., Kneib J.-P., Frayer D. T., 2002, Phys. Rep., 369, 111 Bohren C. F., Huffman D. R., 1983, Absorption and scattering of light by small particles Booth C. M., Schaye J., 2009, MNRAS, 398, 53
Bouwens R. J., et al., 2016, ApJ, 833, 72
Boyer M. L., et al., 2011, AJ, 142, 103
Boyer M. L., et al., 2012, ApJ, 748, 40
Bryan G. L., et al., 2014, ApJS, 211, 19
Burgarella D., et al., 2013, A&A, 554, A70
Calura F., et al., 2017, MNRAS, 465, 54
Calzetti D., Kinney A. L., Storchi-Bergmann T., 1994, ApJ, 429, 582
Capak P. L., et al., 2015, Nature, 522, 455
Caputi K. I., et al., 2007, ApJ, 660, 97
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Casey C. M., Narayanan D., Cooray A., 2014, Phys. Rep., 541, 45
Cazaux S., Spaans M., 2004, ApJ, 611, 40
Chabrier G., 2003, PASP, 115, 763
Chen C.-C., Cowie L. L., Barger A. J., Casey C. M., Lee N., Sanders D. B., Wang W.-H., Williams J. P., 2013, ApJ, 776, 131
Chen C.-C., et al., 2016, ApJ, 831, 91
Chevalier R. A., 1974, ApJ, 188, 501
Choi J.-H., Nagamine K., 2009, MNRAS, 393, 1595
Clark C. J. R., et al., 2015, MNRAS, 452, 397
Clemens M. S., et al., 2013, MNRAS, 433, 695
Cowie L. L., 1978, ApJ, 225, 887
Cowie L. L., Barger A. J., Hsu L.-Y., Chen C.-C., Owen F. N., Wang W.-H., 2017, ApJ, 837, 139
Davé R., et al., 2001, ApJ, 552, 473
Davies L. J. M., Bremer M. N., Stanway E. R., Mannering E., Lehnert M. D., Omont A., 2012, MNRAS, 425, 153
Davies L. J. M., Bremer M. N., Stanway E. R., Lehnert M. D., 2013, MNRAS, 433, 2588 Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
De Vis P., et al., 2017, MNRAS, 464, 4680
Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
Dole H., et al., 2006, A&A, 451, 417
Dorschner J., Henning T., 1995, A&A Rev., 6, 271
Draine B. T., 2009, in Henning T., Grün E., Steinacker J., eds, Astronomical Soci- ety of the Pacific Conference Series Vol. 414, Cosmic Dust - Near and Far. p. 453 (arXiv:0903.1658)
Draine B. T., Li A., 2007, ApJ, 657, 810
Draine B. T., et al., 2007, ApJ, 663, 866
Dunne L., Eales S. A., Edmunds M. G., 2003, MNRAS, 341, 589
Dunne L., et al., 2011, MNRAS, 417, 1510
Durier F., Dalla Vecchia C., 2012, MNRAS, 419, 465
Dwek E., 1998, ApJ, 501, 643
Dwek E., Scalo J. M., 1980, ApJ, 239, 193
Dwek E., Galliano F., Jones A. P., 2007, ApJ, 662, 927
Elbaz D., et al., 2010, A&A, 518, L29
Elíasdóttir Á., et al., 2009, ApJ, 697, 1725
Fall S. M., Krumholz M. R., Matzner C. D., 2010, ApJ, 710, L142
Ferrarotti A. S., Gail H.-P., 2006, A&A, 447, 553
Fitzpatrick E. L., 1985, ApJ, 299, 219
Fitzpatrick E. L., Massa D., 2007, ApJ, 663, 320
Fixsen D. J., Dwek E., Mather J. C., Bennett C. L., Shafer R. A., 1998, ApJ, 508, 123
Fujimoto S., Ouchi M., Ono Y., Shibuya T., Ishigaki M., Nagai H., Momose R., 2016, ApJS, 222, 1
Galametz M., Madden S. C., Galliano F., Hony S., Bendo G. J., Sauvage M., 2011, A&A, 532, A56
Gall C., Andersen A. C., Hjorth J., 2011, A&A, 528, A13
Gall C., et al., 2014, Nature, 511, 326
Gallerani S., et al., 2010, A&A, 523, A85
Gauger A., Balega Y. Y., Irrgang P., Osterbart R., Weigelt G., 1999, A&A, 346, 505
Gehrz R., 1989, in Allamandola L. J., Tielens A. G. G. M., eds, IAU Symposium Vol. 135, Interstellar Dust. p. 445
Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375
Ginolfi M., et al., 2017, MNRAS, 468, 3468
Gordon K. D., Clayton G. C., Misselt K. A., Landolt A. U., Wolff M. J., 2003, ApJ, 594, 279
Gordon K. D., et al., 2014, ApJ, 797, 85
Gould R. J., Salpeter E. E., 1963, ApJ, 138, 393
Green D. A., Tuffs R. J., Popescu C. C., 2004, MNRAS, 355, 1315 Groenewegen M. A. T., 1997, A&A, 317, 503
Gruppioni C., et al., 2013, MNRAS, 432, 23
Harrison C. M., 2017, Nature Astronomy, 1, 0165
Hauser M. G., Dwek E., 2001, ARA&A, 39, 249
Hauser M. G., et al., 1998, ApJ, 508, 25
Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, ApJ, 591, 288
Hildebrand R. H., 1983, QJRAS, 24, 267
Hirashita H., 1999, ApJ, 510, L99
Hirashita H., 2000, PASJ, 52, 585
Hirashita H., 2015, MNRAS, 447, 2937
Hirashita H., Ferrara A., 2002, MNRAS, 337, 921
Hirashita H., Kuo T.-M., 2011, MNRAS, 416, 1340
Hirashita H., Nozawa T., 2017, preprint, (arXiv:1701.07200)
Hirashita H., Yan H., 2009, MNRAS, 394, 1061
Hirashita H., Ferrara A., Dayal P., Ouchi M., 2014, MNRAS, 443, 1704
Hirashita H., Nozawa T., Villaume A., Srinivasan S., 2015, MNRAS, 454, 1620
Hjorth J., Vreeswijk P. M., Gall C., Watson D., 2013, ApJ, 768, 173
Hopkins P. F., 2013, MNRAS, 428, 2840
Hopkins A. M., Connolly A. J., Haarsma D. B., Cram L. E., 2001, AJ, 122, 288
Hopkins P. F., Quataert E., Murray N., 2011, MNRAS, 417, 950
Hou K.-C., Hirashita H., Michałowski M. J., 2016, PASJ, 68, 94
Hou K.-C., Hirashita H., Nagamine K., Aoyama S., Shimizu I., 2017, MNRAS, 469, 870
Hughes D. H., et al., 1998, Nature, 394, 241
Inoue A. K., 2003, PASJ, 55, 901
Inoue A. K., 2005, MNRAS, 359, 171
Inoue A. K., 2011, Earth, Planets, and Space, 63, 1027
Jones A. P., 2009, in Henning T., Grün E., Steinacker J., eds, Astronomical Society of the Pacific Conference Series Vol. 414, Cosmic Dust - Near and Far. p. 473
Jones A. P., Nuth J. A., 2011, A&A, 530, A44
Jones A. P., Tielens A. G. G. M., Hollenbach D. J., McKee C. F., 1994, ApJ, 433, 797
Jones A. P., Tielens A. G. G. M., Hollenbach D. J., 1996, ApJ, 469, 740
Jones A. P., Fanciullo L., Köhler M., Verstraete L., Guillet V., Bocchio M., Ysard N., 2013, A&A, 558, A62
Kamaya H., Silk J., 2002, MNRAS, 332, 251
Kapteyn J. C., 1909, ApJ, 29, 46
Karakas A. I., 2010, MNRAS, 403, 1413
Karim A., et al., 2013, MNRAS, 432, 2
Kennicutt R. C., Evans N. J., 2012, ARA&A, 50, 531
Kim S.-H., Martin P. G., Hendry P. D., 1994, ApJ, 422, 164 Kim J.-h., et al., 2014, ApJS, 210, 14
Kim J.-h., et al., 2016, ApJ, 833, 202
Knudsen K. K., van der Werf P. P., Kneib J.-P., 2008, MNRAS, 384, 1611
Kobayashi C., Umeda H., Nomoto K., Tominaga N., Ohkubo T., 2006, ApJ, 653, 1145 Korn A. J., Becker S. R., Gummersbach C. A., Wolf B., 2000, A&A, 353, 655
Kriek M., Conroy C., 2013, ApJ, 775, L16
Kuo T.-M., Hirashita H., 2012, MNRAS, 424, L34
Lakićević M., et al., 2015, ApJ, 799, 50
Laporte N., et al., 2017, ApJ, 837, L21
Larson R. B., 1981, MNRAS, 194, 809
Lazarian A., Yan H., 2002, ApJ, 566, L105
Leeuw L. L., Sansom A. E., Robson E. I., Haas M., Kuno N., 2004, ApJ, 612, 837
Li A., Draine B. T., 2001, ApJ, 554, 778
Li A., Draine B. T., 2002, ApJ, 576, 762
Li A., Misselt K. A., Wang Y. J., 2006, ApJ, 640, L151
Li Y., et al., 2008a, ApJ, 678, 41
Li A., Liang S. L., Kann D. A., Wei D. M., Klose S., Wang Y. J., 2008b, ApJ, 685, 1046 Li Y., Zheng X., Liu F., 2016, preprint, (arXiv:1603.03497)
Liffman K., Clayton D. D., 1989, ApJ, 340, 853 Lisenfeld U., Ferrara A., 1998, ApJ, 496, 145 Lodders K., 2003, ApJ, 591, 1220
Lucy L. B., 1977, AJ, 82, 1013
Maeder A., 1992, A&A, 264, 105
Maiolino R., Schneider R., Oliva E., Bianchi S., Ferrara A., Mannucci F., Pedani M., Roca Sogorb M., 2004, Nature, 431, 533
Mancini M., Schneider R., Graziani L., Valiante R., Dayal P., Maio U., Ciardi B., Hunt L. K., 2015, MNRAS, 451, L70
Mancini M., Schneider R., Graziani L., Valiante R., Dayal P., Maio U., Ciardi B., 2016, MNRAS, 462, 3130
Marassi S., Schneider R., Limongi M., Chieffi A., Bocchio M., Bianchi S., 2015, MNRAS, 454, 4250
Mathis J. S., Rumpl W., Nordsieck K. H., 1977, ApJ, 217, 425 Matsuura M., et al., 2009, MNRAS, 396, 918
Matsuura M., Woods P. M., Owen P. J., 2013, MNRAS, 429, 2527 Mattsson L., Andersen A. C., 2012, MNRAS, 423, 38
Mattsson L., De Cia A., Andersen A. C., Zafar T., 2014, MNRAS, 440, 1562
McKee C., 1989, in Allamandola L. J., Tielens A. G. G. M., eds, IAU Symposium Vol. 135, Interstellar Dust. p. 431
McKee C. F., Ostriker J. P., 1977, ApJ, 218, 148
McKee C. F., Hollenbach D. J., Seab G. C., Tielens A. G. G. M., 1987, ApJ, 318, 674
McKinnon R., Torrey P., Vogelsberger M., 2016, MNRAS, 457, 3775
McKinnon R., Torrey P., Vogelsberger M., Hayward C. C., Marinacci F., 2017, MNRAS, 468, 1505
Meixner M., et al., 2010, A&A, 518, L71
Ménard B., Scranton R., Fukugita M., Richards G., 2010, MNRAS, 405, 1025
Michałowski M. J., 2015, A&A, 577, A80
Michałowski M. J., Murphy E. J., Hjorth J., Watson D., Gall C., Dunlop J. S., 2010a, A&A, 522, A15
Michałowski M. J., Watson D., Hjorth J., 2010b, ApJ, 712, 942
Morgan H. L., Edmunds M. G., 2003, MNRAS, 343, 427
Morris J. P., 1996, Publications of the Astronomical Society of Australia, 13, 97 Moustakas J., et al., 2013, ApJ, 767, 50
Nagamine K., Springel V., Hernquist L., Machacek M., 2004, MNRAS, 350, 385 Nataf D. M., et al., 2013, ApJ, 769, 88
Nishiyama S., et al., 2006, ApJ, 638, 839
Nishiyama S., Nagata T., Tamura M., Kandori R., Hatano H., Sato S., Sugitani K., 2008, ApJ, 680, 1174
Norris B. R. M., et al., 2012, Nature, 484, 220
Nozawa T., Fukugita M., 2013, ApJ, 770, 27
Nozawa T., Kozasa T., Habe A., 2006, ApJ, 648, 435
Nozawa T., Kozasa T., Habe A., Dwek E., Umeda H., Tominaga N., Maeda K., Nomoto K., 2007, ApJ, 666, 955
Nozawa T., Asano R. S., Hirashita H., Takeuchi T. T., 2015, MNRAS, 447, L16 O’Donnell J. E., Mathis J. S., 1997, ApJ, 479, 806
Omukai K., Nishi R., 1998, ApJ, 508, 141
Omukai K., Tsuribe T., Schneider R., Ferrara A., 2005, ApJ, 626, 627 Oppenheimer B. D., Davé R., 2006, MNRAS, 373, 1265
Ossenkopf V., 1993, A&A, 280, 617
Ouchi M., et al., 2013, ApJ, 778, 102
Pei Y. C., 1992, ApJ, 395, 130
Perley D. A., et al., 2010, MNRAS, 406, 2473
Pipher J. L., 1973, in Greenberg J. M., van de Hulst H. C., eds, IAU Symposium Vol. 52, Interstellar Dust and Related Topics. p. 559
Planck Collaboration et al., 2016, A&A, 594, A13
Popescu C. C., Tuffs R. J., 2002, MNRAS, 335, L41
Popping G., Somerville R. S., Galametz M., 2017, MNRAS, 471, 3152
Puget J.-L., Abergel A., Bernard J.-P., Boulanger F., Burton W. B., Desert F.-X., Hartmann D., 1996, A&A, 308, L5
Rémy-Ruyer A., et al., 2014, A&A, 563, A31
Ripamonti E., Haardt F., Ferrara A., Colpi M., 2002, MNRAS, 334, 401
Robson I., Priddey R. S., Isaak K. G., McMahon R. G., 2004, MNRAS, 351, L29
Rodighiero G., et al., 2010, A&A, 515, A8
Rouillé G., Jäger C., Krasnokutski S. A., Krebsz M., Henning T., 2014, Faraday Discus- sions, 168, 449
Russell S. C., Dopita M. A., 1992, ApJ, 384, 508 Saitoh T. R., 2017, AJ, 153, 85
Saitoh T. R., Makino J., 2013, ApJ, 768, 44
Sanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749 Sarangi A., Cherchneff I., 2015, A&A, 575, A95 Schady P., et al., 2012, A&A, 537, A15
Schaerer D., Boone F., Zamojski M., Staguhn J., Dessauges-Zavadsky M., Finkelstein S., Combes F., 2015, A&A, 574, A19
Schlafly E. F., et al., 2016, ApJ, 821, 78
Schneider R., Omukai K., Inoue A. K., Ferrara A., 2006, MNRAS, 369, 1437
Schneider R., Valiante R., Ventura P., dell’Agli F., Di Criscienzo M., Hirashita H., Kemper F., 2014, MNRAS, 442, 1440
Scicluna P., Siebenmorgen R., 2015, A&A, 584, A108
Scicluna P., Siebenmorgen R., Wesson R., Blommaert J. A. D. L., Kasper M., Voshchin- nikov N. V., Wolf S., 2015, A&A, 584, L10
Seab C. G., Shull J. M., 1983, ApJ, 275, 652
Smail I., Ivison R. J., Blain A. W., Kneib J.-P., 2002, MNRAS, 331, 495
Smith M. W. L., et al., 2012, ApJ, 748, 123
Smith B. D., et al., 2017, MNRAS, 466, 2217
Springel V., 2005, MNRAS, 364, 1105
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328, 726
Springel V., et al., 2005, Nature, 435, 629
Srinivasan S., et al., 2009, AJ, 137, 4810
Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M., Pettini M., 1999, ApJ, 519, 1
Stinson G. S., Brook C., Macciò A. V., Wadsley J., Quinn T. R., Couchman H. M. P., 2013, MNRAS, 428, 129
Stratta G., Maiolino R., Fiore F., D’Elia V., 2007, ApJ, 661, L9
Sullivan M., Mobasher B., Chan B., Cram L., Ellis R., Treyer M., Hopkins A., 2001, ApJ, 558, 72
Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
Takeuchi T. T., 2010, MNRAS, 406, 1830
Takeuchi T. T., Buat V., Burgarella D., 2005, A&A, 440, L17
Temim T., Sonneborn G., Dwek E., Arendt R. G., Gehrz R. D., Slane P., Roellig T. L., 2012, ApJ, 753, 72
Tielens A. G. G. M., 2010, The Physics and Chemistry of the Interstellar Medium Tinsley B. M., 1980, Fund. Cosmic Phys., 5, 287
Tomczak A. R., et al., 2014, ApJ, 783, 85
Tremonti C. A., et al., 2004, ApJ, 613, 898
Trumpler R. J., 1930, PASP, 42, 214
Tsai J. C., Mathews W. G., 1995, ApJ, 448, 84
Valiante R., Schneider R., Bianchi S., Andersen A. C., 2009, MNRAS, 397, 1661
Valiante R., Schneider R., Salvadori S., Bianchi S., 2011, MNRAS, 416, 1916
Ventura P., et al., 2012, MNRAS, 424, 2345
Vlahakis C., Dunne L., Eales S., 2005, MNRAS, 364, 1253
Vogelsberger M., et al., 2014, MNRAS, 444, 1518
Wang R., et al., 2008, ApJ, 687, 848
Wang W.-C., Hirashita H., Hou K.-C., 2017a, MNRAS, 465, 3475
Wang W.-H., et al., 2017b, ApJ, 850, 37
Watson D., Christensen L., Knudsen K. K., Richard J., Gallazzi A., Michałowski M. J., 2015, Nature, 519, 327
Weingartner J. C., Draine B. T., 2001, ApJ, 548, 296
Welty D. E., Jenkins E. B., Raymond J. C., Mallouris C., York D. G., 2002, ApJ, 579, 304 Willott C. J., Carilli C. L., Wagg J., Wang R., 2015, ApJ, 807, 180
Wise J. H., Abel T., Turk M. J., Norman M. L., Smith B. D., 2012, MNRAS, 427, 311 Woosley S. E., Heger A., 2007, Phys. Rep., 442, 269
Yajima H., Nagamine K., Thompson R., Choi J.-H., 2014, MNRAS, 439, 3073
Yajima H., Shlosman I., Romano-Díaz E., Nagamine K., 2015, MNRAS, 451, 418
Yamasawa D., Habe A., Kozasa T., Nozawa T., Hirashita H., Umeda H., Nomoto K., 2011, ApJ, 735, 44
Yan H., Lazarian A., Draine B. T., 2004, ApJ, 616, 895
Yasuda Y., Kozasa T., 2012, ApJ, 745, 159
Zafar T., Watson D. J., Malesani D., Vreeswijk P. M., Fynbo J. P. U., Hjorth J., Levan A. J., Michałowski M. J., 2010, A&A, 515, A94
Zafar T., Watson D., Fynbo J. P. U., Malesani D., Jakobsson P., de Ugarte Postigo A., 2011, A&A, 532, A143
Zafar T., et al., 2015, A&A, 584, A100
Zhukovska S., 2014, A&A, 562, A76
Zhukovska S., Henning T., 2013, A&A, 555, A99
Zhukovska S., Gail H.-P., Trieloff M., 2008, A&A, 479, 453
Zhukovska S., Dobbs C., Jenkins E. B., Klessen R. S., 2016, ApJ, 831, 147 Zubko V. G., Mennella V., Colangeli L., Bussoletti E., 1996, MNRAS, 282, 1321 Zubko V., Dwek E., Arendt R. G., 2004, ApJS, 152, 211
de Bennassuti M., Schneider R., Valiante R., Salvadori S., 2014, MNRAS, 445, 3039 di Serego Alighieri S., et al., 2013, A&A, 552, A8
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69766-
dc.description.abstract塵埃在星系演化中扮演了重要的角色。在星際介質中,塵埃的演化 跟非線性演化的恆星形成和恆星回饋有著強烈地關聯。恆星形成和恆 星回饋,它們推動了星系中化學成分豐富度的增長。而數值流體動力 電腦模擬是一個很好的工具來研究上述的非線性過程。
首先,我們檢驗了單一區域的塵埃演化模型是否可以重現銀河系和 鄰近星系的消光曲線。塵埃演化模型包含了,恆星噴出物中的塵埃形 成,塵埃被超新星衝擊摧毀,吸積作用造成的塵埃顆粒成長,以及塵 埃顆粒碰撞後的黏合和粉碎作用。我們用大顆粒 (≲ 0.03 μm) 和小顆粒 (≳ 0.03 μm) 來呈現塵埃顆粒尺寸的大小分佈。在合理範圍內的時間尺 度內,我們重現了銀河系的消光曲線。這表示我們的塵埃演化模型良 好的解釋了銀河系的塵埃演化過程。使用了無定型碳取代石墨來表示 炭塵埃的性質,以及考慮超新星選擇性破壞小顆粒塵埃後,大小麥哲 倫星系的消光曲線也可以重現。根據我們的結果,吸積作用造成的塵 埃顆粒成長對於重現銀河系和大小麥哲倫星系的消光曲線很重要。
接下來我們將塵埃演化模型加入數值流體動力模擬中,然後模擬單 一星系的塵埃演化。相較於單一區域模型,數值模擬提供了更真實的 物理環境來計算塵埃演化過程。在進一步的把塵埃種類分成碳塵埃與 矽塵埃後,我們可以得到消光曲線。這是第一次在模擬的星系中可以 研究星系空間上、密度上、金屬豐度上的消光曲線變化。我們呈現了 模擬的星系中的塵埃和氣體比、塵埃顆粒尺寸分佈、消光曲線的演化。 結果告訴我們,早期星系演化階段 (t ≲ 3 億年),塵埃分布集中在星系 中間區域,因為這時候塵埃的來源主要是恆星產出的塵埃。在顆粒碰 撞的粉碎作用產出足夠的小顆粒塵埃後,吸積作用造成塵埃成長會變 得很有效率,這會快速的提升塵埃總量。在 t ≳ 30 億年後,這種塵埃 總量快速增長然後達到飽和,在那之後塵埃總量不會有太大變化。消 光曲線在 t ≲ 3 億年的時候是平坦的,因為恆星產生的塵埃是主要的 來源。經過吸積作用造成的塵埃成長後,消光曲線在紫外光波段變得 陡峭以及有一個明顯的 2175 Å 突起。在 t ≲ 30 億年後,塵埃顆粒碰撞 的黏合和粉碎作用分別主導了高密度及低密度區域。因此,在外側的 星系盤面,消光曲線有非常明顯的 2175 Å 突起和紫外光波段陡峭的斜 率,而在星系中心區域,2175 Å 突起變得緩和,紫外光波段的斜率也 變得平坦。我們發現,在 t ≲ 30 億年後的消光曲線符合了銀河系的觀 測。這說明了塵埃演化模型成功的被加入到星系數值模擬中。
最後,我們將塵埃演化模型加入到宇宙學電腦模擬,並額外的考慮 了塵埃受到星系間介質中高溫氣體的濺射作用。宇宙學模擬讓我們用 統計星系中塵埃豐度和塵埃性質。我們檢驗了塵埃質量函數和各種塵 埃性質與星系性質的比例關係。塵埃性質包含了塵埃和氣體比、塵埃 和恆星質量比、小顆粒和大顆粒豐度比。星系性質則包含恆星質量、 金屬豐度、氣體比例、恆星形成率。電腦模擬得出的塵埃質量函數與紅移 z = 0 的觀測數據大致符合,除了塵埃質量高的一端有過度產生 塵埃的現象。塵埃氣體比與金屬豐度關係與鄰近星系的觀測一致,表 示了塵埃演化模型成功與宇宙學電腦模擬結合。此外,我們探討了星 系中塵埃的紅移演化至紅移 z ∼ 5。我們發現最高的塵埃質量密度在紅 移 z = 2 和 1 之間。塵埃顆粒尺寸分布讓我們檢驗了消光曲線的紅移演 化,高紅移星系有著平坦的消光曲線,而紅移 z = 0 的星系,最陡峭的 消光曲線出現在金屬豐度 Z ∼ 0.3 Z⊙ 的星系。
zh_TW
dc.description.abstractDust enrichment is one of the most important aspects in galaxy evolution. The evolution of dust is tightly coupled with the nonlinear evolution of the ISM including star formation and stellar feedback, which drive the chemical enrichment in a galaxy. Numerical hydrodynamical simulation provides a powerful approach to studies of such nonlinear processes.
Firstly, we examine whether the dust enrichment model can reproduce the extinction curves of the Milky Way and the nearby galaxies using a one- zone model. The dust model includes all processes that dominate the dust evolution in galaxies such as dust production in stellar ejecta, destruction in supernova shocks, dust growth by accretion and coagulation, and dust disrup- tion by shattering. We also treat the evolution of grain sizes distribution by representing the entire grain radius range by small (≲ 0.03 μm) and large (≳ 0.03 μm) grains. The Milky Way extinction curve is reproduced in reasonable ranges for the timescale of the above processes, which shows that our models are successful in reproducing the Milky Way dust extinction properties. The LMC/SMC extinction curves can be reproduced by adopting amorphous car- bon for the carbonaceous dust species and additionally considering selective supernova destruction in which small grains are easier to be destroyed than large grains. Our results suggest that interstellar processes, in particular, grain growth by accretion, are important in reproducing the Milky Way, LMC and SMC extinction curves.
Secondly, we implement the dust enrichment model mentioned above into smoothing particle hydrodynamics (SPH) simulation of a single galaxy. In comparison with one-zone model, simulation provides much more realistic physical conditions to estimate the dust evolution processes. By further separating dust species into carbonaceous and silicate dust, we can obtain the extinction curves. For the first time, the simulation allows us to examine the dependence of extinction curves on the position, gas density, and metallicity in the galaxy. We present the evolution of dust-to-gas mass ratio, grain size distribution and extinction curve in the simulated galaxy. Our results show that at the earliest evolutionary stage (t ≲ 0.3 Gyr), dust is limited to the central region of the galaxy since star formation starts from the center and stellar dust production is the dominant source. Grain growth by accretion becomes efficient after small grains become abundant by shattering and rapidly raises the total dust abundance. Because the dust mass increase by accretion is saturated at t ≳ 3 Gyr, the total dust abundance does not evolve much. Extinction curves are flat at t ≲ 0.3Gyr because stellar dust production dominates the total dust abundance. After dust growth by accretion becomes efficient, extinction curves have a prominent 2175 Å bump and a steep far-ultraviolet (FUV) rise. At t ≳ 3 Gyr, shattering and coagulation dominate the low and high density regions, respectively. Therefore, extinction curves show a very strong 2175 Å bump and steep FUV rise in the outer disc; in contrast, the center of galaxy have extinction curves with a moderate 2175 Å bump and FUV slope. The extinction curves at t ≳ 3 Gyr are consistent with that of the Milky Way, which indicates that the included processes in our models are consistent with the dust properties indicated by the Milky Way extinction curve.
Finally, we present a cosmological simulation with dust evolution. We consider the same dust enrichment model as above with additionally consid- ering sputtering in the hot circum/intergalactic gas. Our cosmological simu- lation allows us to analyze the dust abundance and dust properties in galaxies statistically. We examine the dust mass function and various dust scaling rela- tions between dust properties including dust-to-gas mass ratio, dust-to-stellar mass ratio, and small-to-large grain abundance ratio and galaxy properties like stellar mass, metallicity, gas fraction, and specific star formation rate. We broadly reproduce the observed dust mass function at z = 0, except an over-prediction at dust mass ≳ 1010 M⊙. The relation between dust-to-gas mass ratio and metallicity at z = 0 fits the local galaxy observations, which implies that the dust evolution is implemented successfully in our cosmology simulation. Besides, we investigate the redshift evolution of dust content in galaxies up to z ∼ 5. We find that the comoving dust mass density is the highest between z = 2 and 1 in the history of the Universe. The grain size distribution calculated in our simulation allows us to examine the extinction curve. Flat extinction curves was found in high z galaxies; at z = 0, galax- ies with Z ∼ 0.3 Z⊙ have the steepest FUV slope than galaxies with other metallicities.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:27:01Z (GMT). No. of bitstreams: 1
ntu-107-D03244001-1.pdf: 14028803 bytes, checksum: 066db37d1aec9144dbd550772ec192e9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAcknowledgements iii
摘要 v
Abstract vii
1 Introduction 1
1.1 Dust in galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Extinction curves . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Far-infrared (FIR) emission . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Dust and galaxy evolution . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dust enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Stellar dust production . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Dust destruction . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Dust growth in the dense ISM . . . . . . . . . . . . . . . . . . . 7
1.2.4 Coagulation and shattering . . . . . . . . . . . . . . . . . . . . . 8
1.3 Numerical models for dust evolution in galaxies . . . . . . . . . . . . . . 8
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Extinction curves in galaxies 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Dust enrichment model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Two-size, two-species model . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Extinction curve . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Observational data for extinction curves . . . . . . . . . . . . . . 19
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Dust-to-gas ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Parameter dependence of extinction curve . . . . . . . . . . . . . 21
2.3.3 The MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 The SMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 The LMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Other possible dust species . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Constraint on the parameters . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Tuning for the SMC and LMC . . . . . . . . . . . . . . . . . . . 33
2.4.4 Can we explain all with the same parameter set? . . . . . . . . . 34
2.4.5 Extinction curves in other galaxies . . . . . . . . . . . . . . . . . 34
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Dust in a single-galaxy simulation 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Galaxy simulation with dust enrichment . . . . . . . . . . . . . . 44
3.2.3 Extinction curve . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Dust enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Extinction curves . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Ciscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Comparison with the Milky Way extinction curve . . . . . . . . . 57
3.4.2 DS/DL in silicate and carbonaceous dust . . . . . . . . . . . . . 59
3.4.3 Dust species abundance ratio . . . . . . . . . . . . . . . . . . . . 61
3.4.4 Extinction curves inside and outside the disc . . . . . . . . . . . 62
3.4.5 SMC/LMC extinction curves . . . . . . . . . . . . . . . . . . . . 64
3.4.6 Extinction curves in high redshift galaxies . . . . . . . . . . . . . 65
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Dust in cosmology simulation 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Cosmological simulation . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Identifying galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Dust enrichment model . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Dust mass function . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Dust-to-gas mass ratio . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Dust-to-stellar mass ratio . . . . . . . . . . . . . . . . . . . . . . 78
4.3.4 Small-to-large grain abundance ratio . . . . . . . . . . . . . . . . 81
4.3.5 Redshift evolution . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.6 Extinction curves . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Dust-to-gas mass ratio vs. dust-to-stellar mass ratio . . . . . . . . 87
4.4.2 Discrepancy at low and high-mass ends . . . . . . . . . . . . . . 89
4.4.3 Prospect for the calculations of extinction curves . . . . . . . . . 90
4.4.4 Prospects for higher redshifts . . . . . . . . . . . . . . . . . . . . 91
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5 Conclusion and future prospects 95
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1 Radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Zoom-in simulation for high-z galaxies . . . . . . . . . . . . . . 97
5.2.3 AGN—dusty starburst connection . . . . . . . . . . . . . . . . . 98
Bibliography 99
dc.language.isoen
dc.title使用星系和宇宙學電腦模擬研究塵埃演化zh_TW
dc.titleDust evolution in galaxy and cosmology simulationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor平下博之(Hiroyuki Hirashita)
dc.contributor.oralexamcommittee闕志鴻(Tzihong Chiueh),王為豪(Wei-Hao Wang),野?貴也(Takaya Nozawa)
dc.subject.keyword星系,星系演化,塵埃,塵埃消光,塵埃演化,電腦模擬,zh_TW
dc.subject.keywordgalaxy,galaxy evolution,dust,dust extinction,dust evolution,simulation,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201800759
dc.rights.note有償授權
dc.date.accepted2018-04-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
13.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved