請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69762完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹承礎 | |
| dc.contributor.author | Ming-Lei Chiang | en |
| dc.contributor.author | 江鳴雷 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:26:52Z | - |
| dc.date.available | 2021-05-17 | |
| dc.date.copyright | 2018-05-17 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-04-27 | |
| dc.identifier.citation | 馮英健,2007,網路營銷基礎與實踐,台灣,清華大學出版社。
苗錫哲,2007,現代市場營銷案例分析,中國,青島出版社。 謝文雀,2015,行銷管理:亞洲觀點(第6版),台北,華泰文化事業股份有限公司。 朱訓麒,2016,電子商務:新商業革命,台北,前程文化事業有限公司。 陳傑豪,2016,大數據玩行銷,台北,30雜誌。 菲利浦.科特勒、陳就學與伊萬.塞提亞宛,2017,行銷4.0:新虛實融合時代贏得顧客的全思維,台北,天下雜誌股份有限公司。 羅樹忠,2001,互聯網營銷概述,http://www.emkt.com.cn/article/47/4714.html,搜尋日期:2017年10月11日 子亥,2013,網路行銷新手地圖-01-網路行銷和傳統行銷的差異,http://www.tzehai.com/2013/07/odds-between-marketings/,搜尋日期:2017年11月20日 郭芝榕,2014,Google調查:62%中小企業使用數位行銷工具,https://www.bnext.com.tw/article/34524/BN-ARTICLE-34524,搜尋日期:2017年12月13日 Craig Dempster, John Lee. 2015. The Rise of the Platform Marketer. John Wiley & Sons, Inc. Google. 2014. Understanding Consumers’ Local Search Behavior. Ipsos MediaCT. Jun Wang, Weinan Zhang, Shuai Yuan. 2016. Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting R. Preston McAfee. 2011. The Design of Advertising Exchanges. Springer Science+Business Media, LLC. Theodore Book, Dan S. Wallach. 2015. An Empirical Study of Mobile Ad Targeting. Tod Gordon. 2014. Media Economy Report-Netter, Smarter, Faster: How data is changing our business. MAGNA GLOBAL USA, Inc. Ashu Garg. 2015. VC predicts marketing tech will grow 10X in 10 years. http://chiefmartec.com/2015/02/vc-predicts-marketing-technology-will-grow-10x-10-years/. Accessed Dec 12, 2017 Chris Le May. 2015. Will the CMO role fade with the rise of the chief marketing technologist?. https://www.campaignlive.co.uk/article/will-cmo-role-fade-rise-chief-marketing-technologist/1357501?src_site=marketingmagazine. Accessed Dec 12, 2017 Frederick Vallaeys. 2014. These 3 New Technologies Should Keep Marketers Awake At Night. https://marketingland.com/3-new-technologies-keep-marketers-awake-night-101958. Accessed Dec 19, 2017 Scott Brinker and Laura McLellan. 2014. The Rise of the Chief Marketing Technologist. https://hbr.org/2014/07/the-rise-of-the-chief-marketing-technologist. Accessed Dec 12, 2017 Sean Downey. 2018. How integrated data and technology helped 3 companies transform their marketing. https://www.thinkwithgoogle.com/marketing-resources/customer-integrated-data-technology/ Accessed Mar 22, 2018 Tom Kaneshige. 2015. Marketing technology is big(really big) business. https://www.cio.com/article/2886388/marketing/marketing-automation-is-big-really-big-business.html. Accessed Jan 13, 2018 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69762 | - |
| dc.description.abstract | 科技帶來的時代,變化飛快!廣告已成為社會文明進化的重要指標。廣告行業的巨頭,可能已經不是您所熟悉的傳統的廣告集團了,而是Facebook、Google、百度、阿里巴巴這些的「網路公司」。
過去20年,廣告的重鎮,從歐洲,包括倫敦與巴黎等地,快速移轉至矽谷與北京,廣告預算大幅從電視、報紙、雜誌、廣播等傳統媒體,轉向互聯網、移動互聯網等新媒體上。 在美國,2015年網路廣告的市場規模為596億美金,比第二名的無線電視406億美金高出約47%,比第五名的報紙廣告151億美金高出近294%,幾乎是3倍的市場金額。而在台灣2015年網路廣告市場193.52億台幣,相較2014年成長19.6%,已經連續5年兩位數成長,是僅次於電視廣告的第二大媒體,預計3~5年即將超過電視媒體,成為廣告產業最主要的成長動能。其中,大數據在廣告產業的應用,已經徹底顛覆了廣告行業。透過更多大數據技術 (Big Data)與人工智慧 (AI)的應用,廣告行業從創意驅動的模式,逐漸轉變為數據驅動的模式,廣告刊播之決策更多是由分析數據後,所建立的數學模型所決定。 如同前面提到,全球目前最大的廣告巨頭是Google、Facebook等公司,產業正在重新洗牌,利用數位廣告行業,作為大數據人才儲備與能力發展的商業模式,已經變成包括美國或對岸的國家級重要戰略,但台灣呢? 大數據不是一句空話,必須要有堅強的商業模式在背後支撐,從擁有龐大數據量的Google, Facebook的經營經驗來看,廣告是將數據轉為營收的重要的商業模式,大數據除了可以應用在廣告業,還可以在電子商務業、物聯網、金融業、醫療業等各種行業。延伸出來的就是大數據廣告、大數據電商、大數據金融、大數據醫療等讓產業升級的新舊融合產業。 | zh_TW |
| dc.description.abstract | The era of technology is changing rapidly! Advertising has become an important indicator of social civilization evolution. At present, the giants of the advertising industry may not be the traditional advertising groups you’re familiar with. Instead, they are the 'Internet companies' such as: Facebook, Google, Baidu and Alibaba.
Over the past 20 years, the center of advertising has speedily shifted from Europe, including London and Paris to Silicon Valley and Beijing. In addition, the advertising budget has also drastically changed its focus, from traditional media such as television, newspapers, magazines and radio to new media, for instance, the Internet and the mobile Internet. In the United States, the market size of online advertising in 2015 was 59.6 billion U.S. dollars, 47% higher than the second-tier wireless television 40.6 billion U.S. dollars, and was nearly 294% higher than the 5th place newspaper advertisement 15.1 billion U.S, almost three times the market value. Taiwan's online advertising market reached 19.352 billion NTD in 2015, compared to 2014’s 19.6%, it has grown at a double-digit rate for the pass five consecutive years. Online advertising media is the second largest media only next to television commercials and is expected to surpass TV commercials in the next three to five years to become advertising industry's most important growth momentum. Among them, the application of big data in the advertising industry has completely overturned the advertising industry. With more Big Data and AI technology being adopted, advertising industry has evolved from a creatively driven model to a data-driven one, the advertising decisions are more determined by the established mathematical model after analyzing the data. As mentioned above, the world's largest advertising giants Google, Facebook and other companies are reshuffling the industry. Seeing digital advertising industry as a business model to reserve people with digital talents and ability development has become a national-level strategy that the United States and Mainland China. And what about Taiwan? Big data is not just some empty words, one needs to have a strong business model in order to support the whole idea. With the large amount of data collected by management experiences from Google and Facebook, advertising is an important business model that turns data into revenue. Thus, big data can not only be used in the advertising industry, also in the e-commerce industry, the Internet of things, the financial industry, the medical industry and all walks of life. If we extend big data into all works of life, it could be big data advertising, big data e-commerce, big data finance, big data and medical industries etc. Then becomes a fusion industry upgraded the old and new. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:26:52Z (GMT). No. of bitstreams: 1 ntu-107-P04747017-1.pdf: 5280194 bytes, checksum: 42d5b7fb18a7520decdda6256b3132a2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 ii 謝誌 iii 中文摘要 iv THESIS ABSTRACT v 目錄 vii 圖目錄 ix 表目錄 x 第一章 緒論 1 第一節、研究背景與動機 1 第二節、研究目的與問題 1 第三節、研究流程與論文架構 2 第二章 文獻探討4 第一節、傳統行銷與數位行銷 4 第二節、以技術引領行銷產業 14 第三節、以大數據為基礎的行銷策略 16 第三章 研究方法與研究設計22 第一節、挑戰與危機分析 22 第二節、藉由大數據提升市場競爭力 28 第三節、企業藉由大數據分析擬定行銷策略 35 第四節、小結 37 第四章 研究機構 (U公司)大數據行銷系統介紹與分析38 第一節、AI智能化數據行銷平台 38 第二節、Data Management Platform 42 第三節、標籤定義標準化聯盟 48 第五章 研究結論與建議50 第一節、研究結論50 第二節、建議 51 參考文獻 53 圖目錄 圖2-1 傳統行銷資訊流6 圖2-2 網路行銷資訊流7 圖2-3 Buffer管理工具平台介面11 圖2-4 以日為單位計算之行銷策略12 圖2-5 以人為核心之行銷策略17 圖2-6 NES模型敘述18 圖2-7 NES顧客水位圖,顧客再多也只分5種狀態21 圖3-1 2017年上半年度台灣數位廣告量統計報告24 圖3-2 2012~2017台灣數位廣告量趨勢變化24 圖3-3 截至2018年3月全球行銷科技公司版圖25 圖3-4 U公司Business Model Canvas分析29 圖3-5 U公司的五力分析34 圖4-1 U公司AI智能化數據行銷平台 – urMOJO 38 圖4-2 U公司AI智能化數據行銷平台功能表39 圖4-3 U公司DMP定位44 圖4-4 U公司DMP Tracking Data分類44 圖4-5 U公司DMP標籤定義說明45 圖4-6 模組化分群預測應用45 圖4-7 U公司DMP平台功能表46 圖4-8 U公司產品目錄分類技術流程48 表目錄 表1-1 論文架構3 表2-1 行銷觀念的演進8 表2-2 傳統行銷與網路行銷之比較一9 表2-3 傳統行銷與網路行銷之比較二10 表3-1 U公司SWOT分析表27 表3-2 U公司SWOT策略矩陣28 表3-3 U公司4年營收預估30 表3-4 U公司4年毛利率預估31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 媒體集團 | zh_TW |
| dc.subject | 新媒體 | zh_TW |
| dc.subject | 網路廣告 | zh_TW |
| dc.subject | 大數據 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 商業模式 | zh_TW |
| dc.subject | AI | en |
| dc.subject | advertising group | en |
| dc.subject | new media | en |
| dc.subject | Business model | en |
| dc.subject | online advertising | en |
| dc.subject | Big data | en |
| dc.title | 大數據在數位行銷廣告產業應用之研究
—以U公司為例 | zh_TW |
| dc.title | Big Data Application in the Digital Marketing Advertising Industry — A Case Study of U Company | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡益坤,陳建錦 | |
| dc.subject.keyword | 媒體集團,新媒體,網路廣告,大數據,人工智慧,商業模式, | zh_TW |
| dc.subject.keyword | advertising group,new media,online advertising,Big data,AI,Business model, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU201800760 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-04-30 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理組 | zh_TW |
| 顯示於系所單位: | 資訊管理組 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
