請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69733
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王興國(Hsing-Kuo Wang) | |
dc.contributor.author | Wei-Chen Peng | en |
dc.contributor.author | 彭維辰 | zh_TW |
dc.date.accessioned | 2021-06-17T03:25:40Z | - |
dc.date.available | 2020-10-11 | |
dc.date.copyright | 2018-10-11 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-05-17 | |
dc.identifier.citation | 1. Levi N. The incidence of achilles tendon rupture in copenhagen. Injury 1997;28:311-3. 2. Sharma P, Maffulli N. Tendon injury and tendinopathy: Healing and repair. J Bone Joint Surg Am 2005;87:187-202. 3. Khan RJ, Fick D, Brammar TJ, Crawford J, Parker MJ. Interventions for treating acute achilles tendon ruptures. Cochrane Database Syst Rev 2004:Cd003674. 4. Khan RJ, Fick D, Keogh A, Crawford J, Brammar T, Parker M. Treatment of acute achilles tendon ruptures. A meta-analysis of randomized, controlled trials. J Bone Joint Surg Am 2005;87:2202-10. 5. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports 2000;10:312-20. 6. Tortora G, Derrickson B. Principles of anatomy and physiology: Organisation, support and movement and control systems of the human body. Hoboken, NJ: John Wiley and Sons 2009. 7. Huijing PA. Architecture of the human gastrocnemius muscle and some functional consequences. Acta Anat (Basel) 1985;123:101-7. 8. Cutts A. The range of sarcomere lengths in the muscles of the human lower limb. J Anat 1988;160:79-88. 9. Walker SM, Schrodt GR. I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec 1974;178:63-81. 10. Tabary JC, Tabary C, Tardieu C, Tardieu G, Goldspink G. Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 1972;224:231-44. 11. Shah SB, Peters D, Jordan KA, Milner DJ, Friden J, Capetanaki Y, et al. Sarcomere number regulation maintained after immobilization in desmin-null mouse skeletal muscle. J Exp Biol 2001;204:1703-10. 12. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004;84:649-98. 13. Thorpe CT, Godinho MS, Riley GP, Birch HL, Clegg PD, Screen HR. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons. J Mech Behav Biomed Mater 2015. 14. Brown IE, Scott SH, Loeb GE. Mechanics of feline soleus: Ii. Design and validation of a mathematical model. J Muscle Res Cell Motil 1996;17:221-33. 15. Jozsa L, Balint JB, Reffy A, Demel Z. Histochemical and ultrastructural study of adult human tendon. Acta Histochem 1979;65:250-7. 16. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 1991;73:1507-25. 17. Vailas AC, Tipton CM, Laughlin HL, Tcheng TK, Matthes RD. Physical activity and hypophysectomy on the aerobic capacity of ligaments and tendons. J Appl Physiol Respir Environ Exerc Physiol 1978;44:542-6. 18. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL. Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 2010;285:15674-81. 19. James R, Kesturu G, Balian G, Chhabra AB. Tendon: Biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 2008;33:102-12. 20. Shortland AP, Harris CA, Gough M, Robinson RO. Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 2002;44:158-63. 21. Wang JH. Mechanobiology of tendon. J Biomech 2006;39:1563-82. 22. Garner WL, McDonald JA, Koo M, Kuhn C, Weeks PM. Identification of the collagen-producing cells in healing flexor tendons. Plast Reconstr Surg 1989;83:875-9. 23. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res 2002;4:252-60. 24. Oakes BW. Tissue healing and repair: Tendons and ligaments. Rehabilitation of sports injuries: scientific basis 2003:28-98. 25. Abrahamsson SO. Matrix metabolism and healing in the flexor tendon. Experimental studies on rabbit tendon. Scand J Plast Reconstr Surg Hand Surg Suppl 1991;23:1-51. 26. Hooley C, Cohen R. A model for the creep behaviour of tendon. International Journal of Biological Macromolecules 1979;1:123-32. 27. Farkas LG, McCain WG, Sweeney P, Wilson W, Hurst LN, Lindsay WK. An experimental study of the changes following silastic rod preparation of a new tendon sheath and subsequent tendon grafting. J Bone Joint Surg Am 1973;55:1149-58. 28. Amiel D, Akeson WH, Harwood FL, Frank CB. Stress deprivation effect on metabolic turnover of the medial collateral ligament collagen. A comparison between nine- and 12-week immobilization. Clin Orthop Relat Res 1983:265-70. 29. Maffulli N. Rupture of the achilles tendon. J Bone Joint Surg Am 1999;81:1019-36. 30. Doral MN, Alam M, Bozkurt M, Turhan E, Atay OA, Donmez G, et al. Functional anatomy of the achilles tendon. Knee Surg Sports Traumatol Arthrosc 2010;18:638-43. 31. Komi PV, Salonen M, Jarvinen M, Kokko O. In vivo registration of achilles tendon forces in man. I. Methodological development. Int J Sports Med 1987;8 Suppl 1:3-8. 32. Fukashiro S, Komi PV, Jarvinen M, Miyashita M. In vivo achilles tendon loading during jumping in humans. Eur J Appl Physiol Occup Physiol 1995;71:453-8. 33. Longo UG, Ronga M, Maffulli N. Achilles tendinopathy. Sports Med Arthrosc 2009;17:112-26. 34. JA N. The achilles tendon: Treatment and rehabilitation. NY: Springer 2008. 35. Padanilam TG. Chronic achilles tendon ruptures. Foot Ankle Clin 2009;14:711-28. 36. Thompson J, Baravarian B. Acute and chronic achilles tendon ruptures in athletes. Clin Podiatr Med Surg 2011;28:117-35. 37. Movin T, Ryberg A, McBride DJ, Maffulli N. Acute rupture of the achilles tendon. Foot Ankle Clin 2005;10:331-56. 38. Mann RA, Holmes GB, Seale KS, Collins DN. Chronic rupture of the achilles tendon: A new technique of repair. J Bone Joint Surg Am 1991;73:214-9. 39. Maffulli N, Ajis A, Longo UG, Denaro V. Chronic rupture of tendo achillis. Foot Ankle Clin 2007;12:583-96. 40. Ng N, Soderman K, Norberg M, Ohman A. Increasing physical activity, but persisting social gaps among middle-aged people: Trends in northern sweden from 1990 to 2007. Glob Health Action 2011;4:6347. 41. Mathiak G, Wening JV, Mathiak M, Neville LF, Jungbluth K. Serum cholesterol is elevated in patients with achilles tendon ruptures. Arch Orthop Trauma Surg 1999;119:280-4. 42. Holmes GB, Lin J. Etiologic factors associated with symptomatic achilles tendinopathy. Foot Ankle Int 2006;27:952-9. 43. Kujala UM, Sarna S, Kaprio J. Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med 2005;15:133-5. 44. de Jonge S, van den Berg C, de Vos RJ, van der Heide HJ, Weir A, Verhaar JA, et al. Incidence of midportion achilles tendinopathy in the general population. Br J Sports Med 2011;45:1026-8. 45. Suchak AA, Bostick G, Reid D, Blitz S, Jomha N. The incidence of achilles tendon ruptures in edmonton, canada. Foot Ankle Int 2005;26:932-6. 46. Maffulli N, Waterston SW, Squair J, Reaper J, Douglas AS. Changing incidence of achilles tendon rupture in scotland: A 15-year study. Clin J Sport Med 1999;9:157-60. 47. Huttunen TT, Kannus P, Rolf C, Fellander-Tsai L, Mattila VM. Acute achilles tendon ruptures: Incidence of injury and surgery in sweden between 2001 and 2012. Am J Sports Med 2014;42:2419-23. 48. Lantto I, Heikkinen J, Flinkkila T, Ohtonen P, Kangas J, Siira P, et al. Early functional treatment versus cast immobilization in tension after achilles rupture repair: Results of a prospective randomized trial with 10 or more years of follow-up. Am J Sports Med 2015. 49. Nyyssonen T, Luthje P. Achilles tendon ruptures in south-east finland between 1986-1996, with special reference to epidemiology, complications of surgery and hospital costs. Ann Chir Gynaecol 2000;89:53-7. 50. Leppilahti J, Puranen J, Orava S. Incidence of achilles tendon rupture. Acta Orthop Scand 1996;67:277-9. 51. Nillius SA, Nilsson BE, Westlin NE. The incidence of achilles tendon rupture. Acta Orthop Scand 1976;47:118-21. 52. Lieber RL, Leonard ME, Brown CG, Trestik CL. Frog semitendinosis tendon load-strain and stress-strain properties during passive loading. Am J Physiol 1991;261:C86-92. 53. Nyyssonen T, Luthje P, Kroger H. The increasing incidence and difference in sex distribution of achilles tendon rupture in finland in 1987-1999. Scand J Surg 2008;97:272-5. 54. Houshian S, Tscherning T, Riegels-Nielsen P. The epidemiology of achilles tendon rupture in a danish county. Injury 1998;29:651-4. 55. Longo UG, Ronga M, Maffulli N. Acute ruptures of the achilles tendon. Sports Med Arthrosc 2009;17:127-38. 56. Cretnik A, Frank A. Incidence and outcome of rupture of the achilles tendon. Wien Klin Wochenschr 2004;116 Suppl 2:33-8. 57. Kvist M. Achilles tendon injuries in athletes. Sports Med 1994;18:173-201. 58. Jozsa L, Kannus P. Histopathological findings in spontaneous tendon ruptures. Scand J Med Sci Sports 1997;7:113-8. 59. Jarvinen M, Jozsa L, Kannus P, Jarvinen TL, Kvist M, Leadbetter W. Histopathological findings in chronic tendon disorders. Scand J Med Sci Sports 1997;7:86-95. 60. Maffulli N, Barrass V, Ewen SW. Light microscopic histology of achilles tendon ruptures. A comparison with unruptured tendons. Am J Sports Med 2001;28:857-63. 61. Tallon C, Maffulli N, Ewen SW. Ruptured achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc 2001;33:1983-90. 62. Williams JG. Achilles tendon lesions in sport. Sports Med 1986;3:114-35. 63. Maffulli N. Achilles tendon rupture. Br J Sports Med 1995;29:279-80. 64. Inglis AE, Sculco TP. Surgical repair of ruptures of the tendo achillis. Clin Orthop Relat Res 1981:160-9. 65. Clain MR, Baxter DE. Achilles tendinitis. Foot Ankle 1992;13:482-7. 66. Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 1994;27:899-905. 67. Birch HL, Wilson AM, Goodship AE. The effect of exercise-induced localised hyperthermia on tendon cell survival. J Exp Biol 1997;200:1703-8. 68. Sharma P, Maffulli N. Biology of tendon injury: Healing, modeling and remodeling. J Musculoskelet Neuronal Interact 2006;6:181-90. 69. Movin T, Gad A, Reinholt FP, Rolf C. Tendon pathology in long-standing achillodynia. Biopsy findings in 40 patients. Acta Orthop Scand 1997;68:170-5. 70. Jiang N, Wang B, Chen A, Dong F, Yu B. Operative versus nonoperative treatment for acute achilles tendon rupture: A meta-analysis based on current evidence. Int Orthop 2012;36:765-73. 71. Nistor L. Surgical and non-surgical treatment of achilles tendon rupture. A prospective randomized study. J Bone Joint Surg Am 1981;63:394-9. 72. Soroceanu A, Sidhwa F, Aarabi S, Kaufman A, Glazebrook M. Surgical versus nonsurgical treatment of acute achilles tendon rupture: A meta-analysis of randomized trials. J Bone Joint Surg Am 2012;94:2136-43. 73. Strom AC, Casillas MM. Achilles tendon rehabilitation. Foot Ankle Clin 2009;14:773-82. 74. Hutchison AM, Topliss C, Beard D, Evans RM, Williams P. The treatment of a rupture of the achilles tendon using a dedicated management programme. Bone Joint J 2015;97-b:510-5. 75. Nilsson-Helander K, Silbernagel KG, Thomee R, Faxen E, Olsson N, Eriksson BI, et al. Acute achilles tendon rupture: A randomized, controlled study comparing surgical and nonsurgical treatments using validated outcome measures. Am J Sports Med 2010;38:2186-93. 76. Groetelaers RP, Janssen L, van der Velden J, Wieland AW, Amendt AG, Geelen PH, et al. Functional treatment or cast immobilization after minimally invasive repair of an acute achilles tendon rupture: Prospective, randomized trial. Foot Ankle Int 2014;35:771-8. 77. Mark-Christensen T, Troelsen A, Kallemose T, Barfod KW. Functional rehabilitation of patients with acute achilles tendon rupture: A meta-analysis of current evidence. Knee Surg Sports Traumatol Arthrosc 2014:1-8. 78. Geremia JM, Bobbert MF, Nova MC, Ott RD, de Aguiar Lemosa F, de Oliveira Lupiona R, et al. The structural and mechanical properties of the achilles tendon 2 years after surgical repair. Clin Biomech 2015;30:485-92. 79. Maffulli N, Tallon C, Wong J, Lim KP, Bleakney R. Early weightbearing and ankle mobilization after open repair of acute midsubstance tears of the achilles tendon. Am J Sports Med 2003;31:692-700. 80. Fruensgaard S, Helmig P, Riis J, Stovring JO. Conservative treatment for acute rupture of the achilles tendon. Int Orthop 1992;16:33-5. 81. Osarumwense D, Wright J, Gardner K, James L. Conservative treatment for acute achilles tendon rupture: Survey of current practice. J Orthop Surg 2013;21:44-6. 82. Mattila VM, Huttunen TT, Haapasalo H, Sillanpaa P, Malmivaara A, Pihlajamaki H. Declining incidence of surgery for achilles tendon rupture follows publication of major rcts: Evidence-influenced change evident using the finnish registry study. Br J Sports Med 2015;49:1084-6. 83. Moller M, Movin T, Granhed H, Lind K, Faxen E, Karlsson J. Acute rupture of tendon achillis. A prospective randomised study of comparison between surgical and non-surgical treatment. J Bone Joint Surg Br 2001;83:843-8. 84. Alexander RM, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud 1975;1:115-23. 85. Narici M. Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: Functional significance and applications. J Electromyogr Kinesiol 1999;9:97-103. 86. Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR. Muscle architecture and force-velocity relationships in humans. J Appl Physiol Respir Environ Exerc Physiol 1984;57:435-43. 87. Abellaneda S, Guissard N, Duchateau J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol (1985) 2009;106:169-77. 88. Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 1994;221:177-90. 89. Butterfield TA. Eccentric exercise in vivo: Strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev 2010;38:51-60. 90. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc 2004;36:379-87. 91. Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 2006;209:289-310. 92. Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol (1985) 1997;82:354-8. 93. Kawakami Y, Abe T, Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol (1985) 1993;74:2740-4. 94. Narici M, Cerretelli P. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 1998;5:P73-4. 95. Ishikawa M, Komi PV. Muscle fascicle and tendon behavior during human locomotion revisited. Exerc Sport Sci Rev 2008;36:193-9. 96. de Boer MD, Seynnes OR, di Prampero PE, Pisot R, Mekjavic IB, Biolo G, et al. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur J Appl Physiol 2008;104:401-7. 97. di Prampero PE, Narici MV. Muscles in microgravity: From fibres to human motion. J Biomech 2003;36:403-12. 98. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol (1985) 2003;95:2229-34. 99. Maganaris CN, Baltzopoulos V. Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion. Eur J Appl Physiol Occup Physiol 1999;79:294-7. 100. Duchateau J. Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 1995;27:1581-9. 101. Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE. Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol (1985) 1999;86:85-92. 102. Ruegg DG, Kakebeeke TH, Gabriel JP, Bennefeld M. Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin Neurophysiol 2003;114:86-93. 103. Larsson L, Li X, Berg HE, Frontera WR. Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 1996;432:320-8. 104. Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P. Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 2004;557:501-13. 105. Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA. The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 2007;293:C313-20. 106. Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, et al. Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 2000;83:463-8. 107. Reeves ND, Maganaris CN, Ferretti G, Narici MV. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol (1985) 2005;98:2278-86. 108. Maganaris CN, Reeves ND, Rittweger J, Sargeant AJ, Jones DA, Gerrits K, et al. Adaptive response of human tendon to paralysis. Muscle Nerve 2006;33:85-92. 109. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 2007;583:1079-91. 110. Tabary JC, Tardieu C, Tardieu G, Tabary C, Gagnard L. Functional adaptation of sarcomere number of normal cat muscle. J Physiol 1976;72:277-91. 111. Kawakami Y, Muraoka Y, Kubo K, Suzuki Y, Fukunaga T. Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 2000;7:53-9. 112. Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, et al. Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 2001;84:7-12. 113. Fukutani A, Kurihara T. Comparison of the muscle fascicle length between resistance-trained and untrained individuals: Cross-sectional observation. Springerplus 2015;4:341. 114. Maughan RJ, Watson JS, Weir J. Muscle strength and cross-sectional area in man: A comparison of strength-trained and untrained subjects. Br J Sports Med 1984;18:149-57. 115. Kawakami Y, Abe T, Kuno SY, Fukunaga T. Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 1995;72:37-43. 116. Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech 2007;22:718-24. 117. Li L, Tong KY, Hu X. The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound. Arch Phys Med Rehabil 2007;88:243-50. 118. Gao F, Zhang LQ. Altered contractile properties of the gastrocnemius muscle poststroke. J Appl Physiol (1985) 2008;105:1802-8. 119. Lieber RL, Leonard ME, Brown-Maupin CG. Effects of muscle contraction on the load-strain properties of frog aponeurosis and tendon. Cells Tissues Organs 2000;166:48-54. 120. Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 1984;17:579-96. 121. Rack PM, Ross HF. The tendon of flexor pollicis longus: Its effects on the muscular control of force and position at the human thumb. J Physiol 1984;351:99-110. 122. Wren TA, Yerby SA, Beaupre GS, Carter DR. Mechanical properties of the human achilles tendon. Clin Biomech 2001;16:245-51. 123. Delgado-Lezama R, Raya JG, Munoz-Martinez EJ. Methods to find aponeurosis and tendon stiffness and the onset of muscle contraction. J Neurosci Methods 1997;78:125-32. 124. Scott SH, Loeb GE. Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole-muscle isometric contractions. J Morphol 1995;224:73-86. 125. Trestik CL, Lieber RL. Relationship between achilles tendon mechanical properties and gastrocnemius muscle function. J Biomech Eng 1993;115:225-30. 126. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol (1985) 2001;90:1671-8. 127. Magnusson SP, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, et al. Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand 2003;177:185-95. 128. Sugisaki N, Kawakami Y, Kanehisa H, Fukunaga T. Effect of muscle contraction levels on the force-length relationship of the human achilles tendon during lengthening of the triceps surae muscle-tendon unit. J Biomech 2011;44:2168-71. 129. Sugisaki N, Kanehisa H, Kawakami Y, Fukunaga T. Behavior of aponeurosis and external tendon of the gastrocnemius muscle during dynamic plantar flexion exercise. Int J Sport Health Sci 2005;3:235-44. 130. Farris DJ, Trewartha G, McGuigan MP, Lichtwark GA. Differential strain patterns of the human achilles tendon determined in vivo with freehand three-dimensional ultrasound imaging. J Exp Biol 2013;216:594-600. 131. Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S. Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo. J Appl Physiol (1985) 2003;95:829-37. 132. Kinugasa R, Shin D, Yamauchi J, Mishra C, Hodgson JA, Edgerton VR, et al. Phase-contrast mri reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction. J Appl Physiol (1985) 2008;105:1312-20. 133. Iwanuma S, Akagi R, Kurihara T, Ikegawa S, Kanehisa H, Fukunaga T, et al. Longitudinal and transverse deformation of human achilles tendon induced by isometric plantar flexion at different intensities. J Appl Physiol (1985) 2011;110:1615-21. 134. Zuurbier CJ, Everard AJ, van der Wees P, Huijing PA. Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech 1994;27:445-53. 135. van Bavel H, Drost MR, Wielders JD, Huyghe JM, Huson A, Janssen JD. Strain distribution on rat medial gastrocnemius (mg) during passive stretch. J Biomech 1996;29:1069-74. 136. Azizi E, Roberts TJ. Biaxial strain and variable stiffness in aponeuroses. J Physiol 2009;587:4309-18. 137. Kubo K, Kanehisa H, Miyatani M, Tachi M, Fukunaga T. Effect of low-load resistance training on the tendon properties in middle-aged and elderly women. Acta Physiol Scand 2003;178:25-32. 138. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties of human achilles tendon are correlated to muscle strength. J Appl Physiol (1985) 2005;99:665-9. 139. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. Age-related differences in achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol (1985) 2012;113:1537-44. 140. Csapo R, Malis V, Hodgson J, Sinha S. Age-related greater achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J Appl Physiol (1985) 2014;116:961-9. 141. Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol (1985) 1999;87:2090-6. 142. Bojsen-Moller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol (1985) 2005;99:986-94. 143. Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T. Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol 2007;99:235-43. 144. Wang HK, Chiang H, Chen WS, Shih TT, Huang YC, Jiang CC. Early neuromechanical outcomes of the triceps surae muscle-tendon after an achilles' tendon repair. Arch Phys Med Rehabil 2013;94:1590-8. 145. Wu YK, Lien YH, Lin KH, Shih TT, Wang TG, Wang HK. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports 2010;20:e80-6. 146. Chimenti RL, Flemister AS, Tome J, McMahon JM, Flannery MA, Xue Y, et al. Altered tendon characteristics and mechanical properties associated with insertional achilles tendinopathy. J Orthop Sports Phys Ther 2014;44:680-9. 147. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the achilles tendon. J Appl Physiol (1985) 2010;108:670-5. 148. Schepull T, Kvist J, Andersson C, Aspenberg P. Mechanical properties during healing of achilles tendon ruptures to predict final outcome: A pilot roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet Disord 2007;8:116. 149. Kawakami Y, Ichinose Y, Fukunaga T. Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol (1985) 1998;85:398-404. 150. Kubo K, Kanehisa H, Takeshita D, Kawakami Y, Fukashiro S, Fukunaga T. In vivo dynamics of human medial gastrocnemius muscle-tendon complex during stretch-shortening cycle exercise. Acta Physiol Scand 2000;170:127-35. 151. Ito M, Kawakami Y, Ichinose Y, Fukashiro S, Fukunaga T. Nonisometric behavior of fascicles during isometric contractions of a human muscle. J Appl Physiol (1985) 1998;85:1230-5. 152. Fukunaga T, Kawakami Y, Kubo K, Kanehisa H. Muscle and tendon interaction during human movements. Exerc Sport Sci Rev 2002;30:106-10. 153. Komi PV. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J Biomech 2000;33:1197-206. 154. Ishikawa M, Pakaslahti J, Komi PV. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 2007;25:380-4. 155. Kurokawa S, Fukunaga T, Fukashiro S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol (1985) 2001;90:1349-58. 156. Hof AL, Geelen BA, van den Berg J. Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech 1983;16:523-37. 157. Roberts TJ. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol A Mol Integr Physiol 2002;133:1087-99. 158. Kubo K, Kanehisa H, Azuma K, Ishizu M, Kuno SY, Okada M, et al. Muscle architectural characteristics in women aged 20-79 years. Med Sci Sports Exerc 2003;35:39-44. 159. Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 2005;183:291-8. 160. Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol 2003;88:520-6. 161. Morse CI, Thom JM, Birch KM, Narici MV. Tendon elongation influences the amplitude of interpolated doublets in the assessment of activation in elderly men. J Appl Physiol (1985) 2005;98:221-6. 162. Narici MV, Maganaris C, Reeves N. Myotendinous alterations and effects of resistive loading in old age. Scand J Med Sci Sports 2005;15:392-401. 163. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol (1985) 2006;100:2048-56. 164. Hoffren M, Ishikawa M, Komi PV. Age-related neuromuscular function during drop jumps. J Appl Physiol (1985) 2007;103:1276-83. 165. Mian OS, Thom JM, Ardigo LP, Minetti AE, Narici MV. Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta Physiol 2007;189:57-65. 166. Kinugasa R, Hodgson JA, Edgerton VR, Sinha S. Asymmetric deformation of contracting human gastrocnemius muscle. J Appl Physiol (1985) 2012;112:463-70. 167. Shin DD, Hodgson JA, Edgerton VR, Sinha S. In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot. J Appl Physiol (1985) 2009;107:1276-84. 168. Debernard L, Robert L, Charleux F, Bensamoun SF. Characterization of muscle architecture in children and adults using magnetic resonance elastography and ultrasound techniques. J Biomech 2011;44:397-401. 169. Betschart C, Kim J, Miller JM, Ashton-Miller JA, DeLancey JO. Comparison of muscle fiber directions between different levator ani muscle subdivisions: In vivo mri measurements in women. Int Urogynecol J 2014;25:1263-8. 170. Blazevich AJ, Coleman DR, Horne S, Cannavan D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol 2009;105:869-78. 171. Finni T, Komi PV. Two methods for estimating tendinous tissue elongation during human movement. Journal of Applied Biomechanics 2002;18:180-8. 172. Guilhem G, Cornu C, Guevel A. Muscle architecture and emg activity changes during isotonic and isokinetic eccentric exercises. Eur J Appl Physiol 2011;111:2723-33. 173. Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 2009;106:827-38. 174. Austin N, Nilwik R, Herzog W. In vivo operational fascicle lengths of vastus lateralis during sub-maximal and maximal cycling. J Biomech 2010;43:2394-9. 175. Binzoni T, Bianchi S, Hanquinet S, Kaelin A, Sayegh Y, Dumont M, et al. Human gastrocnemius medialis pennation angle as a function of age: From newborn to the elderly. J Physiol Anthropol Appl Human Sci 2001;20:293-8. 176. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc 2000;32:1125-9. 177. Reeves ND, Narici MV. Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J Appl Physiol (1985) 2003;95:1090-6. 178. Ando R, Taniguchi K, Saito A, Fujimiya M, Katayose M, Akima H. Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography. J Electromyogr Kinesiol 2014;24:214-20. 179. Raj IS, Bird SR, Shield AJ. Reliability of ultrasonographic measurement of the architecture of the vastus lateralis and gastrocnemius medialis muscles in older adults. Clin Physiol Funct Imaging 2012;32:65-70. 180. Moreau NG, Teefey SA, Damiano DL. In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev Med Child Neurol 2009;51:800-6. 181. Legerlotz K, Smith HK, Hing WA. Variation and reliability of ultrasonographic quantification of the architecture of the medial gastrocnemius muscle in young children. Clin Physiol Funct Imaging 2010;30:198-205. 182. Konig N, Cassel M, Intziegianni K, Mayer F. Inter-rater reliability and measurement error of sonographic muscle architecture assessments. J Ultrasound Med 2014;33:769-77. 183. Ema R, Wakahara T, Mogi Y, Miyamoto N, Komatsu T, Kanehisa H, et al. In vivo measurement of human rectus femoris architecture by ultrasonography: Validity and applicability. Clin Physiol Funct Imaging 2013;33:267-73. 184. Grieve D, Pheasant S, Cavanagh P. Prediction of gastrocnemius length from knee and ankle joint posture. Biomechanics vi-a. 2: University Park Press Baltimore; 1978. p. 405-12. 185. Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM. A model of lower extremity muscular anatomy. J Biomech Eng 1982;104:304-10. 186. Hawkins D, Hull ML. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 1990;23:487-94. 187. Eames NW, Baker R, Cosgrove A. Defining gastrocnemius length in ambulant children. Gait Posture 1997;6:9-17. 188. Yuen TJ, Orendurff MS. A comparison of gastrocnemius muscle-tendon unit length during gait using anatomic, cadaveric and mri models. Gait Posture 2006;23:112-7. 189. Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 2001;268:229-33. 190. Voigt M, Bojsen-Moller F, Simonsen EB, Dyhre-Poulsen P. The influence of tendon youngs modulus, dimensions and instantaneous moment arms on the effici | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69733 | - |
dc.description.abstract | 研究背景:阿基里氏肌腱斷裂常以手術進行修補,已知術後一年健患兩腳的肌力與運動表現仍具差異,例如平衡、跳躍、耐力等。在肌腱癒合過程中,肌束形態及腱性組織機械特性亦可能有所改變,但鮮有文獻探討以上參數在阿基里氏肌腱斷裂術後健患腳之差異,以及與功能性運動表現的關連性。研究目的:本研究將探討阿基里氏肌腱修補手術後一年內,健患兩腳靜態與動態的肌肉肌腱形態學及腱性組織力學特徵、功能性運動表現、自覺嚴重程度、神經肌肉特徵,另探討以上參數之間的相關性,本研究簡稱腱性組織機械特性和肌肉肌腱形態為形態力學,以研究兩者之交互作用。設計:本研究為橫斷式實驗。實驗對象:預計徵召單側阿基里氏肌腱修補手術後3至12個月之患者,年齡介於20至60歲,過去半年內沒有任何下肢傷害,且無任何系統性疾病。方法:受試者於阿基里氏肌腱修補手術後3至12個月的期間接受一次檢測,包含休息狀態、向心及離心蹠屈收縮之下小腿肌肉之肌束形態,等長收縮之腱性組織力學特性,功能性運動表現以及肌電圖數值。統計分析:本實驗採用魏克森符號等級檢定法比較健患兩腳的形態力學、功能性運動表現及肌電圖數值差異,並使用斯皮爾曼等級相關係數分析形態力學與功能性運動表現之相關性。結果:形態學方面,患側的靜態肌肉厚度顯著較薄、肌束和肌肉長度顯著較短、肌腱和腱性組織長度顯著較長(p<0.001~0.049),患側動態之下的肌束長度顯著較短、肌束夾角顯著較大、腱性組織長度顯著較長(p<0.001~0.044),肌束長度、肌肉肌腱單位長度與腱性組織長度的變化量顯著小於健側(p<0.001~0.001);力學特性方面,術後患側的內側腓腸肌深層腱膜剛性顯著小於健側(p=0.003);功能性表現方面,患側的前向星狀距離平衡測試、單腳前跳距離、抬腳跟高度、抬腳跟次數和抬腳跟數值均顯著降低(p<0.001~0.028);肌電圖方面,向心和離心動作之下,術後患側的脛前肌和比目魚肌活化程度均顯著高於健側(p=0.002~0.049),等長收縮動作中,僅脛前肌活化程度顯著高於健側(p=0.040),且健患兩腳肌肉之間的活化程度比值也有顯著差異(p=0.002~0.035)。另外,形態學方面,術後肌肉厚度和肌束長度與最大抬腳跟高度、抬腳跟次數和抬腳跟數值等有顯著正相關性,且肌肉厚度與單腳前跳距離有顯著正相關性;力學特性方面,內側腓腸肌深層腱膜剛性與最大抬腳跟高度及單腳前跳距離有顯著正相關性。結論:阿基里氏肌腱在修補手術後一年內健患兩腳肌束形態、腱性組織力學特性、功能性運動表現及肌電圖數值有顯著差異,且功能性運動表現和肌束形態、腱性組織力學特性具有相關性,因此建議術後應增加高強度訓練和動態訓練,以改善肌肉肌腱形態學及腱性組織力學特徵,促進患者術後復原狀況及運動表現。 | zh_TW |
dc.description.abstract | Background: The Achilles tendon rupture is often treated by surgical repair. During the healing process, there are changes of the mechanical properties of tendon and morphologies of muscle fascicle that may be associated with functional outcomes after the surgical repairs. Few studies have demonstrated there are adaptations of the muscle morphologies, mechanical properties of tendinous tissue and neuromuscular characteristics within muscles of an injured Achilles tendon, and determined associations between these morphomechanical factors and functional outcomes after the repair. Purpose: The aim of this study is to investigate the differences and the correlations between the mechanical properties of deep aponeurosis, muscle-tendon morphologies, functional performance, and electromyography of triceps surae. Morphomechanics is used to represent muscle fascicle morphologies and tendinous tissue mechanical properties, also the relationship between them. Design: This study is a cross-sectional study. Participants: The study recruited patients who received unilateral Achilles tendon repair within 1 year, and aged between 20 and 60 years old without a systemic disease. Methods: The participants received bilateral measurements of muscle fascicle morphologies during resting, concentric and eccentric plantarflexion and mechanical properties of tendinous tissue during isometric plantarflexion, functional outcomes and electromyography. Statistical analysis: Wilcoxson signed-rank test is used to compare the differences between injured and uninjured leg. Spearman correlation analysis is used to analysis the relationship between variables. Results: In morphology, injured leg had significantly thinner muscle thickness, shorter fascicle and muscle length and longer tendon and tendinous tissue length than healthy leg in resting (p<0.001~0.049). Also, injured leg had significantly shorter fascicle length, larger fascicle angle and longer tendinous tissue than healthy leg during dynamic plantarflexion (p<0.001~0.044). The fascicle, muscle-tendon unit, and tendinous tissue length during dynamic movement showed lower variation in injured leg (p<0.001~0.001). In mechanics, injured leg had significantly lower stiffness of medial gastrocnemius deep aponeurosis (p=0.003). In functional performance, injured leg had significantly shorter balance reach distance, shorter one leg hopping distance, lower heel rise height, less heel rise repetition and lower heel rise index than healthy leg (p<0.001~0.028). In electromyography, injured leg had significantly higher muscle activation in tibialis anterior and soleus muscle than healthy leg during concentric and eccentric plantarflexion (p=0.002~0.049). Tibialis anterior muscle showed significantly higher activation in injured leg during isometric plantarflexion than healthy leg (p=0.040). Muscle co-activation ratio also had significant differences between injured and healthy legs (p=0.002~0.035). Correlation analysis revealed a positive relationship in muscle thickness and fascicle length and heel raise related factor, also in the stiffness of deep aponeurosis and heel raise related factor and one leg hopping distance. Conclusion: The morphomechanics, functional outcome and electromyography changed significantly after Achilles tendon repair within 1 year. Also, functional performance showed correlation with muscle-tendon morphomechanics. Based on our research, we suggest patients after Achilles tendon repair should continue high intensity and dynamic training. We expect the improvement of muscle-tendon morphology and mechanical properties of tendinous tissue in order to restore better exercise performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T03:25:40Z (GMT). No. of bitstreams: 1 ntu-107-R03428006-1.pdf: 4100568 bytes, checksum: 7c6240e894221d3ff49fde2e11fdb5fc (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… i 誌謝………………………………………………………………………………… ii 中文摘要…………………………………………………………………………… iii 英文摘要…………………………………………………………………………… v 第一章 前言 1 第一節 研究背景 1 第二節 研究目的 2 第二章 文獻回顧 3 第一節 肌肉肌腱解剖生理 3 第二節 阿基里氏肌腱功能及相關傷害 8 第三節 肌束形態學 15 第四節 腱性組織機械特性與生物力學特徵 18 第五節 牽拉─收縮循環與肌肉形態力學 21 第六節 研究方法學 24 第七節 維多利亞競技研究所評估量表 31 第八節 總結 32 第三章 研究方法 33 第一節 理論架構 33 第二節 假說 34 第三節 參數與操作型定義 36 第四節 研究對象 42 第五節 研究方法 43 第六節 統計分析 55 第四章 結果 56 第一節 無母數分析 57 第二節 無母數之相關性分析 62 第五章 討論 64 第六章 結論 77 第七章 參考文獻 78 附錄一:本研究結果圖表 97 附錄二:臨床試驗受試者說明及同意書 109 附錄三:倫理委員會臨床試驗許可書 167 | |
dc.language.iso | zh-TW | |
dc.title | 阿基里氏肌腱修補手術後健患腳小腿三頭肌形態力學差異 | zh_TW |
dc.title | Morphomechanical differences of musculotendon complex of triceps surae muscle between injured and uninjured leg in patients with an Achilles tendon repair | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江鴻生(Hong-Sen Chiang),陳文翔(Wen-Shiang Chen) | |
dc.subject.keyword | 阿基里氏肌腱斷裂,形態力學,腱性組織,功能性運動表現,肌電圖, | zh_TW |
dc.subject.keyword | Achilles tendon rupture,morphomechanics,tendinous tissue,functional outcome,electromyography, | en |
dc.relation.page | 170 | |
dc.identifier.doi | 10.6342/NTU201800413 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-05-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。