請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69687完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐(Mario Hofmann) | |
| dc.contributor.author | Yi-Chun Chin | en |
| dc.contributor.author | 秦逸群 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:23:50Z | - |
| dc.date.available | 2023-06-13 | |
| dc.date.copyright | 2018-06-13 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-08 | |
| dc.identifier.citation | [1] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann. Das Adsorptionsverhalten sehr dünner Kohlenstoff‐Folien. ZAAC ‐ Journal of Inorganic and General Chemistry, 316(3-4):119–127, 1962.
[2] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, and A A Firsov. Electric field effect in atomically thin carbon films. Science (New York, N.Y.), 306(5696):666–9, 2004. [3] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M R Peres, and A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320(5881):1308, 2008. [4] Kin Fai Mak, Matthew Y. Sfeir, Yang Wu, Chun Hung Lui, James A. Misewich, and Tony F. Heinz. Measurement of the opptical conductivity of graphene. Physical Review Letters, 101(19):2–5, 2008. [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10):351–355, 2008. [6] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008. [7] Rajni Garg, Naba Dutta, and Namita Choudhury. Work Function Engineering of Graphene. Nanomaterials, 4(2):267–300, 2014. [8] Young-Jun Yu, Yue Zhao, Sunmin Ryu, Louis E Brus, Kwang S Kim, and Philip Kim. Tuning the graphene work function by electric field effect. Supplementary Information. Nano letters, 9(10):3430–4, 2009. [9] K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490(7419):192–200, 2012. [10] Wonbong Choi, Indranil Lahiri, Raghunandan Seelaboyina, and Yong Soo Kang. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences, 35(1):52–71, 2010. [11] H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey. Electrical, optical, and structural properties of indiumtin-oxide thin films for organic light-emitting devices. Journal of Applied Physics, 86(11):6451–6461, 1999. [12] By L Groenendaal, Friedrich Jonas, Dieter Freitag, Harald Pielartzik, and John R Reynolds. Its Derivatives : Past , Present , and Future. pages 481–494, 2000. [13] Tat’yana V Vernitskaya and Oleg N Efimov. Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russian Chemical Reviews, 66(5):443–457, 1997. [14] David S. Hecht, Liangbing Hu, and Glen Irvin. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23(13):1482–1513, 2011. [15] Xiangping Chen, Lili Zhang, and Shanshan Chen. Large area CVD growth of graphene. Synthetic Metals, 210:95–108, 2015. [16] Ya-Ping Hsieh, Mario Hofmann, and Jing Kong. Promoter-assisted chemical vapor deposition of graphene. 2013. [17] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo, and Rodney S. Ruoff. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9(12):4359–4363, 2009. [18] Jianfeng Shen, Yongmin He, Jingjie Wu, Caitian Gao, Kunttal Keyshar, Xiang Zhang, Yingchao Yang, Mingxin Ye, Robert Vajtai, Jun Lou, and Pulickel M. Ajayan. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 15(8):5449–5454, 2015. [19] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun’ko, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9):563–568, 2008. [20] Keith R. Paton, Eswaraiah Varrla, Claudia Backes, Ronan J. Smith, Umar Khan, Arlene O’Neill, Conor Boland, Mustafa Lotya, Oana M. Istrate, Paul King, Tom Hig-gins, Sebastian Barwich, Peter May, Pawel Puczkarski, Iftikhar Ahmed, Matthias Moebius, Henrik Pettersson, Edmund Long, João Coelho, Sean E. O’Brien, Eva K. McGuire, Beatriz Mendoza Sanchez, Georg S. Duesberg, Niall McEvoy, Timothy J. Pennycook, Clive Downing, Alison Crossley, Valeria Nicolosi, and Jonathan N. Coleman. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 13(6):624–630, 2014. [21] Xu Cui, Chenzhen Zhang, Rui Hao, and Yanglong Hou. Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 3(5):2118, 2011. [22] Kai-Jyun Chen. Fabrication of complex nanoscale surfaces and their application in functional coatings. Master thesis, National Cheng Kung University Department, 2017. [23] Mustafa Lotya, Yenny Hernandez, Paul J. King, Ronan J. Smith, Valeria Nicolosi, Lisa S. Karlsson, Fiona M. Blighe, Sukanta De, Zhiming Wang, I. T. McGovern, Georg S. Duesberg, and Jonathan N. Coleman. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 131(10):3611–3620, 2009. [24] Scott Gilje, Song Han, Minsheng Wang, Kang L. Wang, and Richard B. Kaner. A chemical route to graphene for device applications. Nano Letters, 7(11):3394–3398, 2007. [25] Arlene O’Neill, Umar Khan, Peter N. Nirmalraj, John Boland, and Jonathan N Coleman. Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. The Journal of Physical Chemistry C, 115(13):5422–5428, 2011. [26] Subimal Majee, Man Song, Shi Li Zhang, and Zhi Bin Zhang. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 102:51–57, 2016. [27] X Li, G Zhang, X Bai, X Sun, X Wang, E Wang, and H Dai. Highly conducting graphene sheets and Langmuir-Blodgett films. Natue Nanotechnology, 3(9):1–5, 2008. [28] Vincent C. Tung, Matthew J. Allen, Yang Yang, and Richard B. Kaner. Highthroughput solution processing of large-scale graphene. Nature Nanotechnology, 4(1):25–29, 2009. [29] Héctor A. Becerril, Jie Mao, Zunfeng Liu, Randall M. Stoltenberg, Zhenan Bao, and Yongsheng Chen. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2(3):463–470, 2008. [30] Supinda Watcharotone, D a Dikin, Sasha Stankovich, Richard Piner, Inhwa Jung, G H B Dommett, Guennadi Evmenenko, S E Wu, S F Chen, C P Liu, and Sonbinh T Nguyen. Graphene- Silica Composite Thin Films as Transparent Conductors. Nano Letters, 7(7):1888–1892, 2007. [31] Irving Langmuir. The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39(9):1848–1906, 1917. [32] Katharine B. Blodgett. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. Journal of the American Chemical Society, 57(6):1007–1022, 1935. [33] Laura J. Cote, Franklin Kim, and Jiaxing Huang. Langmuir-blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131(3):1043–1049, 2009. [34] Qingbin Zheng, Wai Hing Ip, Xiuyi Lin, Nariman Yousefi, Kan Kan Yeung, Zhigang Li, and Jang Kyo Kim. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 5(7):6039–6051, 2011. [35] S. Garoff, H.W. Deckman, J.H. Dunsmuir, M.S. Alvarez, and J.M. Bloch. Bondorientational order in Langmuir-Blodgett surfactant monolayers. Journal de Physique, 47(4):701–709, 1986. [36] Qijie Guo, Xiaowei Teng, Saifur Rahman, and Hong Yang. Patterned Langmuir-Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. Journal of the American Chemical Society, 125(3):630–631, 2003. [37] S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, and M. C. Petty. Langmuir-Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Letters, 3(4):533–536, 2003. [38] N. R. Pallas and Y. Harrison. An automated drop shape apparatus and the surface tension of pure water. Colloids and Surfaces, 43(2):169–194, 1990. [39] James Speight. Lange’s Handbook of Chemistry, 70th Anniversary Edition. 2004. [40] Arthur W. Adamson and Alice P. Gast. Physical Chemistry of Surfaces. page 808, 1997. [41] Steven P Koenig, Narasimha G Boddeti, Martin L Dunn, and J Scott Bunch. Ultrastrong Adhesion of Graphene Membranes. [42] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18):187401, 2006. [43] Hua-Li Nie, Xuan Dou, Zhihong Tang, Hee Dong Jang, and Jiaxing Huang. High-Yield Spreading of Water-Miscible Solvents on Water for Langmuir–Blodgett Assembly. Journal of the American Chemical Society, 137(33):10683–10688, 2015. [44] Gregory J. Silverberg, Phoebe Pearce, and Chad D. Vecitis. Controlling selfassembly of reduced graphene oxide at the air-water interface: Quantitative evidence for long-range attractive and many-body interactions. ACS Applied Materials and Interfaces, 7(6):3807–3815, 2015. [45] Laura J. Cote, Jaemyung Kim, Zhen Zhang, Cheng Sun, and Jiaxing Huang. Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. Soft Matter, 6(24):6096, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69687 | - |
| dc.description.abstract | 力學削切方法從3維材料得到2維材料已有不少文獻回報,因其簡易及可大量生產等優點而獲得重視。然而如何從削切所得之2維材料再進一步做成勻質薄膜乃至應用在電子元件上仍未完整了解。此篇論文將會研究純石墨烯在水-大氣介面上的成膜機置、構型及其電子元件特性。借由Langmuir-Blodgett (L-B)方法,我們發現一種全新且不可逆的緊密排列石墨烯薄膜。此外,我們也觀測到於高擠壓下,此固相膜會產生週期性的側潰現象。這些特殊之物理表現使我們發現一些新的製成手法。轉印於矽基板和玻璃後之光學、電子及原子力顯微鏡量測,證明此法有辦法達到大面積、勻質、輕薄等優異之特性,使其有未來應用於電子元件之可適性。 | zh_TW |
| dc.description.abstract | Exfoliation of 3-dimensional bulk to 2-dimensional material has been reported for years, and it is easily achieved to mass production. However, creating uniform thin films from exfoliated 2-dimensional material is one of the biggest challenges to utilizing it in many applications, such as transparent conducting film (TCF). In this thesis we study the behavior of pristine graphene films on the water-air interface through Langmuir-Blodgett method. We identify a novel morphological solid phase where graphene flakes form continuous and irreversibly connected films that are surprisingly stable. Under higher mechanical compression, those closely packed graphene films buckle with a periodic shape, but they are elastic enough to restore back to the irreversible films. Some fabrication techniques are discovered with these special behaviors. Upon transfer, we characterize its quality by optical microscope, SEM and AFM measurements. The data show that Langmuir-Blodgett graphene film is thin and uniform, and suitable for large scale electronics applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:23:50Z (GMT). No. of bitstreams: 1 ntu-107-R05222022-1.pdf: 32856287 bytes, checksum: f3eb48dd1e964886fb025008059928c5 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iii List of Figures vii List of Tables ix 1 Introduction 1 1.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Transparent conducting thin film . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Graphene fabrication techniques . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Graphene flake deposition methods . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Spray coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Casting and spin coating . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Langmuir-Blodgett method . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 8 1.5.2 Subphase and insoluble molecules . . . . . . . . . . . . . . . . . 9 1.5.3 Surface tension measurement . . . . . . . . . . . . . . . . . . . 10 1.5.4 Different phases under compression . . . . . . . . . . . . . . . . 13 1.5.5 Deposition and layer controls . . . . . . . . . . . . . . . . . . . 14 2 Experimental Detail and Material Preparation 17 2.1 Graphene exfoliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Centrifugation and separation . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Graphene film preparation . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Syringe pump stage . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Ultrasonication . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Langmuir film and Langmuir-Blodgett method . . . . . . . . . . . . . . 23 2.4.1 Wilhelmy plate preparation . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Trough preparation . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Asymmetric compression . . . . . . . . . . . . . . . . . . . . . . 27 2.4.4 Isothermal measurement . . . . . . . . . . . . . . . . . . . . . . 28 2.4.5 Substrate choices . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.6 Langmuir-Blodgett film deposition . . . . . . . . . . . . . . . . 29 2.5 Characterization instruments . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Optical microscope . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.2 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.3 Scanning electron microscopy . . . . . . . . . . . . . . . . . . . 33 2.5.4 Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Sheet resistance measurement . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 Linear four probes method . . . . . . . . . . . . . . . . . . . . . 36 2.6.2 Van der Pauw method . . . . . . . . . . . . . . . . . . . . . . . 37 3 Results and Discussion 38 3.1 Exfoliated 2-dimensional material films on water . . . . . . . . . . . . . 38 3.1.1 Selective dissolution with NMP . . . . . . . . . . . . . . . . . . 39 3.1.2 Sonicator promoted dissolution . . . . . . . . . . . . . . . . . . 41 3.2 Isothermal behavior of pristine graphene Langmuir films . . . . . . . . . 42 3.2.1 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 Irreversible solid phase and surface tension locking . . . . . . . . 46 3.2.3 Ionic binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Isothermal behavior of graphene/stearic acid films . . . . . . . . . . . . . 51 3.3.1 Isothermal behavior of pure stearic acid . . . . . . . . . . . . . . 52 3.3.2 Surface tension propagation . . . . . . . . . . . . . . . . . . . . 52 3.4 Film transfer and graphene quality analyzing . . . . . . . . . . . . . . . 54 3.4.1 Morphology for different phases . . . . . . . . . . . . . . . . . . 54 3.4.2 Film thickness and uniformity . . . . . . . . . . . . . . . . . . . 57 3.4.3 Sheet resistance over phases . . . . . . . . . . . . . . . . . . . . 57 4 Summary 59 Bibliography 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 表面張力 | zh_TW |
| dc.subject | 等溫相態 | zh_TW |
| dc.subject | L-B膜 | zh_TW |
| dc.subject | Langmuir-Blodgett | en |
| dc.subject | graphene | en |
| dc.subject | surface tension | en |
| dc.subject | isothermal phases | en |
| dc.title | 二維材料於空氣-水界面之膜強度調控研究 | zh_TW |
| dc.title | Tuning of 2D Materials’ Interactions at the Water-Air
Interface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝雅萍,陳永芳,許佳振 | |
| dc.subject.keyword | L-B膜,石墨烯,表面張力,等溫相態, | zh_TW |
| dc.subject.keyword | Langmuir-Blodgett,graphene,surface tension,isothermal phases, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201800751 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-06-08 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 32.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
