Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69683
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor宋聖榮(Sheng-Rong Song)
dc.contributor.authorJuan Ricardo Diaz Muñozen
dc.contributor.author狄懷安zh_TW
dc.date.accessioned2021-06-17T03:23:41Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationREFERENCES.
Álvarez, N. C., Roser, B. P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic set-ting. Journal of South American Earth Sciences, 23(4), 271-289.
Bayona, G., Valencia, A., Mora, A., Rueda, M., Ortiz, J., Montenegro, O. (2008). Estratigrafía y procedencia de las rocas del Mioceno en la parte distal de la cuenca antepais de los Llanos de Colombia. Geología Colombiana, 33, 23-46.
Berti, M., Corsini, A., Daehne, A. (2013). Comparative analysis of surface roughness algo-rithms for the identification of active landslides. Geomorphology, 182, 1-18.
Berti, M., Corsini, A., Daehne, A. (2013). Comparative analysis of surface roughness algo-rithms for the identification of active landslides. Geomorphology, 182, 1-18.
Bishop, D. G., Norris, R. J. (1986). Rift and thrust tectonics associated with a translational block slide, Abbotsford, New Zealand. Geological magazine, 123(1), 13-25.
Boyer, S. E., Elliott, D. (1982). Thrust systems. AAPG bulletin, 66(9), 1196-1230.
Branquet, Y., Cheilletz, A., Giuliani, G., Laumonier, B., Blanco, O. (1999). Fluidized hydro-thermal breccia in dilatant faults during thrusting: the Colombian emerald deposits. Geological Society, London, Special Publications, 155(1), 183-195.
Branquet, Y., Laumonier, B., Cheilletz, A., Giuliani, G. (1999). Emeralds in the Eastern Cor-dillera of Colombia: Two tectonic settings for one mineralization. Geology, 27(7), 597-600.
Cardozo, e., Ramirez quiroga, C. (1985). Ambientes de depósito de la Formación Rosablanca: area de Villa de Leiva.
Carson, M. A., Petley, D. J. (1970). The existence of threshold hillslopes in the denudation of the landscape. Transactions of the Institute of British Geographers, 71-95.
Carvajal, J. H., Navas, O. (2016). Bogotá 'Savanna'. In Landscapes and Landforms of Co-lombia (pp. 115-126). Springer, Cham.
Cheilletz, A., Giuliani, G. (1996). The genesis of Colombian emeralds: a restate-ment. Mineralium Deposita, 31(5), 359-364.
Cheilletz, A., Féraud, G., Giuliani, G., Rodriguez, C. T. (1994). Time-pressure and tempera-ture constraints on the formation of Colombian emeralds; an 40 Ar/39 Ar laser microprobe and fluid inclusion study. Economic Geology, 89(2), 361-380.
Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., ... Pul-ham, A. J. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordil-lera, and middle Magdalena Valley, Colombia. AAPG bulletin, 79(10), 1421-1442.
Dehn, M., Gärtner, H., Dikau, R. (2001). Principles of semantic modeling of landform struc-tures. Computers Geosciences, 27(8), 1005-1010.
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino, M., ... McColl, S. (2015). Ice loss and slope stability in high-mountain regions. In Snow and Ice-related hazards, risks and disasters (pp. 521-561). Academic Press.
Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0.
Giuliani, G., France-Lanord, C., Cheilletz, A., Coget, P., Branquet, Y., Laumomnier, B. (2000). Sulfate reduction by organic matter in Colombian emerald deposits: Chemical and sta-ble isotope (C, O, H) evidence. Economic Geology, 95(5), 1129-1153.
Higgs, R. (2009). The vanishing Carib Halite Formation (Neocomian), Colombia-Venezuela-Trinidad prolific petroleum province. Geological Society, London, Special Publications, 328(1), 659-686.
Jaboyedoff, M., Penna, I., Pedrazzini, A., Baroň, I., Crosta, G. B. (2013). An introductory re-view on gravitational-deformation induced structures, fabrics and model-ing. Tectonophysics, 605, 1-12.
Jaboyedoff, M., Crosta, G. B., Stead, D. (2011). Slope tectonics: a short introduc-tion. Geological Society, London, Special Publications, 351(1), 1-10.
Jébrak, M. (1997). Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore geology reviews, 12(3), 111-134.
Laznicka, P. (1988). Breccias and coarse fragmentites: petrology, environments, associations, ores (Vol. 25). Amsterdam; New York: Elsevier.
MacIntyre, T. J. (2019). Geology and Geochemistry of the Kansanshi Cu-(Au) Deposit, North-Western Province, Zambia (Doctoral dissertation, Colorado School of Mines. Arthur Lakes Li-brary).
Mantilla, L. C., Silva, A., Conde, J., Gaviria, J. A., Gallo, F. H., Torres, D. A., García, C. A. (2007). Investigación petrográfica y geoquímica de las sedimentitas del Cretácico inferior (K1) y sus manifestaciones hidrotermales asociadas; planchas 169, 170, 189, 190 (Cordillera Orien-tal): implicaciones en la búsqueda de esmeraldas. INGEOMINAS, Bogota. 349p.
McNaught, M. A., Mitra, G. (1993). A kinematic model for the origin of footwall syncli-nes. Journal of Structural Geology, 15(6), 805-808.
Melo, R. T. (2019). Notas sobre el contexto tectonoestratigráfico de formación de las esmeral-das colombianas. Boletín Geológico, (45), 37-48.
Min, H., Zhang, T., Li, Y., Zhao, S., Li, J., Lin, D., Wang, J. (2019). The Albitization of K-Feldspar in Organic-and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi For-mation in the Southwestern Upper Yangtze Region, China. Minerals, 9(10), 620.
Mitra, S. (1990). Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG bulletin, 74(6), 921-945.
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., ... Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231), 226-229.
Mora, A., Horton, B.K., Mesa, A., Rubiano, J., Ketcham, R.A., Parra, M., Blanco, V., Garcia, D. Stockli, D.F. 2010b. Migration of Cenozoic deformation in the Eastern Cordillera of Colom-bia interpreted from fission track results and structural relation¬ships: Implications for petrole-um systems. American Associ¬ation of Petroleum Geologists Bulletin, 94(10): 1543–1580.
Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Co-lombia. Geological Society of America Bulletin, 120(7-8), 930-949.
Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., ... Ibañez, M. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Spe-cial Publications, 377(1), 411-442.
Mora,A.(2005) Levantamiento de información estratigráfica y estructural de los Cinturones Esmeraldíferos de la Cordillera Oriental. Ingeominas 152 p.
Mora‐Páez, H., Mencin, D. J., Molnar, P., Diederix, H., Cardona‐Piedrahita, L., Peláez‐Gaviria, J. R., Corchuelo‐Cuervo, Y. (2016). GPS velocities and the construction of the Eastern Cor-dillera of the Colombian Andes. Geophysical Research Letters, 43(16), 8407-8416.
Moreno, N., Silva, A., Mora, A., Tesón, E., Quintero, I., Rojas, L. E., ... Osorio, L. (2013). In-teraction between thin-and thick-skinned tectonics in the foothill areas of an inverted graben. The Middle Magdalena Foothill belt. Geological Society, London, Special Publications, 377(1), 221-255.
Narr, W., Suppe, J. (1991). Joint spacing in sedimentary rocks. Journal of Structural Geolo-gy, 13(9), 1037-1048.
Nemcok, M., Schamel, S., Gayer, R. (2009). Thrustbelts: Structural architecture, thermal re-gimes and petroleum systems. Cambridge University Press
Niño, G. (2017). Geological and Geochemical Analyses for Emerald Exploration in the Muzo Formation along the Western Emerald belt, Colombia.
Parra, M., Mora, A., Sobel, E. R., Strecker, M. R., González, R. (2009). Episodic orogenic front migration in the northern Andes: Constraints from low‐temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4).
Pike, R. J. (1995). Geomorphometry-progress, practice, and prospect. Zeitschrift für Geomor-phologie. Supplementband, (101), 221-238.
Read, J., Stacey, P. (2009). Guidelines for open pit slope design.
Reyes, G., Montoya, D., Terraza, R., Fúquen, J., Mayorga, M., Gaona, T. (2006). Geología del cinturón esmeraldífero occidental Planchas 169, 170, 189 y 190.
REYES, G., MONTOYA, D., TERRAZA, R., FUQUEN, J., MAYORGA, M., (2006). Memoria del Cinturón Esmeraldífero Occidental, Informe de Avance. INGEOMINAS. 41 Págs. Bogotá D.C.
Reyes–Harker, A., Ruiz–Valdivieso, C.F., Mora, A., Ramírez–Arias, J.C., Rodríguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D. Blanco, V. 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. American Association of Petroleum Geologists Bulletin, 99(8): 1407–1453.
RODRÍGUEZ, E.; y ULLOA, C. E., (1994a). Geología de la plancha 169, Puerto Boyacá, escala 1:100.000. Instituto de investigaciones en Geociencias, Minería y Química. INGEOMINAS. 32 Págs., Santa fé de Bogota. D. C.
Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139.
Stuart, N 2015, 'ArcGeomorphometry: A toolbox for geomorphometric characterization of DEMs in the ArcGIS environment', Computers and Geosciences.
Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of sci-ence, 283(7), 684-721.
Suppe, J. (1985). Principles of structural geology. Prentice Hall.
Terraza, R., Montoya, D. (2011). Las esmeraldas de Colombia y su ámbito geologógico.
Terraza, R., Montoya, D., Reyes, G., Moreno, G. Fuquen, J. (2008). Geología del cinturón esme-raldífero oriental, planchas 210, 228 y 229 (informe). Bogota:Ingeominas.
UCHIDA, T., YOKOYAMA, O., SUZUKI, R., TAMURA, K., ISHIZUKA, T. (2011). A new method for assessing deep catastrophic landslide susceptibility. International Journal of Erosion Control Engineering, 4(2), 32-42.
Woodcock, N. H., Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435-440.
Zimmermann, J. L., Giuliani, G., Cheilletz, A., Arboleda, C. (1997). Mineralogical signifi-cance of fluids in channels of Colombian emeralds: a mass-spectrometric study. International Geology Review, 39(5), 425-437.

dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69683-
dc.description.abstractThe Colombian emeralds are well-known green gems, because of their unique characteristics, quality of color and sizes. Colombian Emeralds, located in the Eastern Cordillera, have under-ground mining in various locations. Separated by approximately 130Km is located the Eastern Emerald Belt (EEB) and the Western Emerald Belts (WEB), in a general context they share chemical and tectonic similarities, but, with a complex tectonic evolution.
The geology of emerald and tectonic configuration is composed of disharmonic structures series, e.g., thrusted and folded areas. Current and past mining in these deposits created mines, more than a few tens in WEB, distributed in three districts, Muzo, Cunas, and Coscuez. Based on field surveys into those mines, we observed paths that suggest the location of mines in slumps or landslide areas (slope deformation), which are characterized by matrix-supported structures. Block sizes vary from centimeters to hundreds of meters. Types of blocks include black shale, mudstones, limestones, calcite-rich veins with emeralds, stratiform-pyrite, shale, hydrothermal hydraulic breccia and albitites. Most of the emeralds occur in calcite veins that suddenly cross-cut with no relationship of factors (faults, discontinuities, lateral continuity). In an attempt to explain these, a new concept called Slope Tectonics is applied, which identifies slope induced deformations that were initially related to a pure tectonic origin. We associate present-day exte-rior slope deformations with the structures observed inside the tunnels. These observations used remote sensing techniques (DEM, LANDSAT,) and geomorphometry.
The WEB has slope deformation areas correlated with emerald mines. However, the relationship between present-day slope deformation and ancient deformation inside mines could not be veri-fied. These findings could be useful for further exploration, research projects of emeralds, and general mineral deposits
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:23:41Z (GMT). No. of bitstreams: 1
U0001-1808202003465100.pdf: 13249038 bytes, checksum: 8e08020b6bccac204111bbd41b36909c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContent
CHAPTER 1 INTRODUCTION. 1
CHAPTER 2 GEOLOGICAL SETTING. 3
2.1 Location. 3
2.2Evolution of the Eastern Cordillera. 6
2.3 Stratigraphy 11
2.4 Emerald Mineralization. 13
2.5 Local Geology 17
I. Structural Geology 17
II. Breccias: 18
III. Slope tectonics. 21
CHAPTER 3 METHODOLOGY. 24
3.1 Remote sensing. 25
CHAPTER 4 MINES 28
4.1 Regional Lineaments extraction. 29
4.2 Breccias in the Mines 30
4.3 Mining Districts. 34
4.3.1 Muzo District 36
I. Pavas mine. 37
II. Green Power Mine. 42
4.3.2 Muzo District Remote Sensing. 48
4.3.3 Cunas district 54
I. Cunas Mine 56
4.3.4 Cunas District Remote sensing. 59
CHAPTER 5 Discussion 81
CHAPTER 6 CONCLUSIONS 96
dc.language.isoen
dc.subjectEmeraldszh_TW
dc.subjectRemote Sensingzh_TW
dc.subjectSlumpszh_TW
dc.subjectSlope Tectonicszh_TW
dc.subjectBrecciazh_TW
dc.subjectColombiazh_TW
dc.subjectEmeraldsen
dc.subjectRemote Sensingen
dc.subjectMinesen
dc.subjectSlumpsen
dc.subjectSlope Tectonicsen
dc.subjectBrecciaen
dc.subjectColombiaen
dc.title滑坡構造的野外和遙感證據及其對哥倫比亞祖母綠開採的隱示
zh_TW
dc.titleField Geology Remote Sensing as Evidence for Slope Tectonics and Its Implications on Emerald Mining in Eastern Cordillera, Colombia.
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭力維(Li-Wei Kuo),陳 惠芬(Huei-Fen Chen)
dc.subject.keywordEmeralds,Colombia,Breccia,Slope Tectonics,Slumps,Remote Sensing,zh_TW
dc.subject.keywordEmeralds,Colombia,Breccia,Slope Tectonics,Slumps,Mines,Remote Sensing,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202003916
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
U0001-1808202003465100.pdf
  Restricted Access
12.94 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved