Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂(Kun-Mao Chao)
dc.contributor.authorPei-Chun Hsuen
dc.contributor.author徐霈君zh_TW
dc.date.accessioned2021-06-17T03:23:19Z-
dc.date.available2020-06-22
dc.date.copyright2018-06-22
dc.date.issued2018
dc.date.submitted2018-06-13
dc.identifier.citationAgarwal, V., et al. (2015). 'Predicting effective microRNA target sites in mammalian mRNAs.' Elife 4.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). 'Basic local alignment search tool. ' J Mol Biol 215(3):403-10.
Baker, B. S., et al. (2003). 'Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis.' Br J Dermatol 148(4): 670-679.
Bartel, D. P. (2009). 'MicroRNAs: target recognition and regulatory functions.' Cell 136(2): 215-233.
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008). 'Growth factors and cytokines in wound healing. ' Wound Repair Regen 16(5):585-601.
Beer, B., et al. (1999). 'Characteristics of Filoviridae: Marburg and Ebola viruses.' Naturwissenschaften 86(1): 8-17.
Brown JR, Sanseau P. (2005). 'A computational view of microRNAs and their targets.' Drug Discov Today 10: 595–601.
Bruggemann, H., et al. (2004). 'The complete genome sequence of Propionibacterium acnes, a commensal of human skin.' Science 305(5684): 671-673.
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. (2008) 'Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.' Cell Res 18(10):997-1006.
Clark RA, Nielsen LD, Howell SE, Folkvord JM. (1985) 'Human keratinocytes that have not terminally differentiated synthesize laminin and fibronectin but deposit only fibronectin in the pericellular matrix. ' J Cell Biochem 28(2):127-41.
Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, et al. (2006) 'Prediction and identification of herpes simplex virus 1-encoded microRNAs.' J Virol 80(11):5499-508.
Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. (1997)'CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells.' J Cell Biol. 138(3):707-17.
de Koning HD, van den Bogaard EH, Bergboer JG, Kamsteeg M, van Vlijmen-Willems IM, Hitomi K, et al. 'Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. ' Br J Dermatol. 166(6):1245-54.
Filipowicz, W., et al. (2008). 'Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?' Nat Rev Genet 9(2): 102-114.
Grice, E. A. and J. A. Segre (2011). 'The skin microbiome.' Nat Rev Microbiol 9(4): 244-253.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. (2006). 'miRBase: microRNA sequences, targets and gene nomenclature. ' Nucleic Acids Res 34(Database issue): D140-4.
Hibio, N., et al. (2012). 'Stability of miRNA 5'terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy.' Sci Rep 2: 996.
Lai EC, Tomancak P, Williams RW, Rubin GM. (2003). 'Computational identification of Drosophila microRNA genes. ' Genome Biol 4: R42.
Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu Z-R, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang C-M, Ryan AF, Gallo RL (2009). 'Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. ' Nat Med 15:1377–1382.
Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, et al. (1998) 'Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia.' J Clin Invest. 101(5):982-92.
Lawler J, Duquette M, Whittaker CA, Adams JC, McHenry K, DeSimone DW (1993). 'Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family. ' J Cell Biol 120(4):1059-67.
Leung LL. (1984).'Role of thrombospondin in platelet aggregation. ' J Clin Invest. 74(5):1764-72.
Lewis, B. P., et al. (2005). 'Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.' Cell 120(1): 15-20.
Liang, H., et al. (2014). 'Identification of Ebola virus microRNAs and their putative pathological function.' Sci China Life Sci 57(10): 973-981.
Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, et al. (2012). 'A thrombospondin-dependent pathway for a protective ER stress response.' Cell 149(6):1257-68.
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. (2008) 'Circulating microRNAs as stable blood-based markers for cancer detection. ' Proc Natl Acad Sci USA 105(30):10513-8.
Julian TR, Leckie JO, Boehm AB. (2010). 'Virus transfer between fingerpads and fomites: virus transfer between fingerpads and fomites. ' J Appl Microbiol 109:1868– 1874.
Jurasz P, Alonso-Escolano D, Radomski MW. (2004). 'Platelet--cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation.' Br J Pharmacol. 43(7):819-26.
Khalafallah, M. T., et al. (2017). 'Ebola virus disease: Essential clinical knowledge.' Avicenna J Med 7(3): 96-102.
Kincaid RP, Sullivan CS. (2012). 'Virus-encoded microRNAs: an overview and a look to the future'. PLoS Pathog 8(12): e1003018.
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, et al. (2010). 'Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations.' Arch Virol 155(12):2083-103.
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, et al. (2005). 'Identification of microRNAs of the herpesvirus family.' Nat Methods 2(4):269-76.
Pietenpol JA, Holt JT, Stein RW, Moses HL (1990). 'Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. ' Proc Natl Acad Sci U S A. 87(10):3758-62.
Quaglio, G., et al. (2016). 'Ebola: lessons learned and future challenges for Europe.' Lancet Infect Dis 16(2): 259-263.
Schommer, N. N. and R. L. Gallo (2013). 'Structure and function of the human skin microbiome.' Trends Microbiol 21(12): 660-668.
Schultz GS, Wysocki A (2009). 'Interactions between extracellular matrix and growth factors in wound healing. ' Wound Repair Regen 17(2):153-62.
Sullivan N, Yang ZY, Nabel GJ (2003). 'Ebola virus pathogenesis: implications for vaccines and therapies.' J Virol 77(18):9733-7.
Siomi, H. and M. C. Siomi (2010). 'Posttranscriptional regulation of microRNA biogenesis in animals.' Mol Cell 38(3): 323-332.
Teng, Y., et al. (2015). 'Systematic genome-wide screening and prediction of microRNAs in EBOV during the 2014 Ebolavirus outbreak.' Sci Rep 5: 9912.
Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, et al (2010). 'ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation.' J Biol Chem 285(7):4870-82.
Varani, J., et al. (1988). 'Thrombospondin-induced adhesion of human keratinocytes.' J Clin Invest 81(5): 1537-1544.
Vella MC, Reinert K, Slack FJ. (2004). 'Architecture of a validated MicroRNA: Target interaction. ' Chem Biol 11: 1619–1623.
Wang, B., et al. (2012). 'Thrombospondins and synaptogenesis.' Neural Regen Res 7(22): 1737-1743.
Wight TN, Raugi GJ, Mumby SM, Bornstein P. (1985) 'Light microscopic immunolocation of thrombospondin in human tissues. ' J Histochem Cytochem 33(4):295-302.
Yang, Z. Y., et al. (2000). 'Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury.' Nat Med 6(8): 886-889.
Yoon SR, De Micheli G. (2005). 'Prediction of regulatory modules comprising microRNAs and target genes. ' Bioinformatics 21: 93–100.
Zaki, S. R., et al. (1999). 'A novel immunohistochemical assay for the detection of Ebola virus in skin: implications for diagnosis, spread, and surveillance of Ebola hemorrhagic fever. Commission de Lutte contre les Epidemies a Kikwit.' J Infect Dis 179 Suppl 1: S36-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69674-
dc.description.abstract埃博拉病毒(Ebola virus),是絲狀病毒科的其中一種由鏈狀的負鏈核糖核酸病毒粒子構成,可導致伊波拉出血熱具有高死亡率。埃博拉病毒的組織病理學和免疫病理學上的分析皆顯露,在皮膚組織上的組織病變,與不同程度的內皮細胞膨脹和壞死有所關聯。微生物在宿主內的交互作用在皮膚免疫防線扮演關鍵的角色,而在埃博拉病毒中發現的微小 RNA (miRNAs)暗示著在埃博拉病毒傳染期間所觀察到的免疫逃脫,內皮細胞破裂,以及組織溶解等現象,是埃博拉病毒微小 RNA 造成的影響。 正常皮膚角質細胞( Keratinocytes) 在細胞免疫反應的起始階段可以透過thrombospondin 蛋白質家庭的幫助來進行附著和轉移,許多微小 RNA 已知可以與thrombospondin RNA 的 3 端非轉譯區域結合,從而控制 thrombospondin 蛋白質的穩定性和轉譯行為。 在本篇研究中,我們利用生物資訊學方法尋找痤瘡丙酸桿菌( Propionibacterium acnes)中的短片段 RNA,並發現這些短片段 RNA 也許與微小 RNA 具有相同的功能,我們也尋找出這些 RNA 片段的共同標的基因( target gene)。 這些 RNA 片段傾向於結合在同一 thrombospondin 蛋白質之上,並進行基因表現之調控, 這個現象強調埃這些在博拉病毒、痤瘡丙酸桿菌和人類中的微小RNA 有可能存在潛在性的協同作用。這個結果揭露 thrombospondin 蛋白質與微小RNA 在埃博拉病毒傳染機制中存在重要線索。zh_TW
dc.description.abstractEbola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs) in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3′ untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4,emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes, and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infectionen
dc.description.provenanceMade available in DSpace on 2021-06-17T03:23:19Z (GMT). No. of bitstreams: 1
ntu-107-D98945017-1.pdf: 1324673 bytes, checksum: bc3f29e34efc755507101ff4f3cab2d4 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 #
誌謝 ii
ACKNOWLEDGEMENTS iii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Ebola Virus Infections and Host Responses 1
1.1.1 The molecular battlefield 1
1.1.2 Shifting other routes of transmission 2
1.2 Bioinformatics Analysis and Prediction of Potential EBOV MicroRNAs (miRNAs) 3
1.2.1 MicroRNA biogenesis and regulatory roles 3
1.2.2 Identification and validation of a novel microRNA-like molecule derived from RNA virus 4
1.2.3 Ebola virus and microRNA-like fragment for Ebola virus disease 5
1.3 Interactions of Microbiota and Opportunistic Pathogens 7
1.3.1 Anatomy and Physiology of the Skin 7
1.3.2 The Human Skin as a Habitat for Microorganisms 7
1.3.3 The Microbiota of the Human Skin 8
1.3.4 Protective Functions of the Human Skin Microbiota 9
1.3.5 Pathogen Recognition by Keratinocytes 10
1.3.6 Hemostasis and Inflammation 10
1.3.7 TGFβ Pathway 11
1.4 A New Approach to Identification of the Mechanism of EBOV Infection 13
Chapter 2 Materials and Methods 14
2.1 Identification of Short RNA Fragments in P. acnes 14
2.2 Target Gene Prediction 16
2.3 Analysis of THSD4 mRNA expression 18
Chapter 3 Results 19
3.1 Prediction of P. acnes Small RNA Fragments from EBOV miRNAs by Homology 19
3.2 Target Gene Prediction Using Small RNA Fragments 22
3.3 Clustering and Conserved Segments of Human miRNAs 26
3.4 Analysis of THSD4 mRNA expression 28
Chapter 4 Discussion 31
REFERENCE 33
LIST OF FIGURES
Figure 1. Flowchart of target gene prediction. 21
Figure 2. Alignment of RNA sequences orthologous to the human THSD4 DNA sequence. 27
Figure 3. Relative expression of THSD4 mRNA. 30
LIST OF TABLES
Table 1. Short RNA sequences employed in this study. 24
dc.language.isoen
dc.subject微生物體zh_TW
dc.subject伊波拉zh_TW
dc.subjectmicrobiomeen
dc.subjectmicroRNAen
dc.subjectTHSD4en
dc.subjectEbola virusen
dc.title透過人類微生物體尋找伊波拉病毒 microRNA 標的基因zh_TW
dc.titleOn revealing the gene targets of Ebola virus miRNAs involved in human skin microbiomeen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor黃俊銘(Chun-Ming Huang)
dc.contributor.oralexamcommittee賴飛羆(Fei-Pei Lai),張瑞峰(Ruey-Feng Chang),傅楸善(Chiou-Shann Fuh),歐陽彥正(YJ Oyang)
dc.subject.keyword伊波拉,微生物體,zh_TW
dc.subject.keywordEbola virus,microbiome,microRNA,THSD4,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201800830
dc.rights.note有償授權
dc.date.accepted2018-06-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved