Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69646
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學士(Shey-Shi Lu)
dc.contributor.authorKun-Ying Yehen
dc.contributor.author葉昆穎zh_TW
dc.date.accessioned2021-06-17T03:22:17Z-
dc.date.available2028-06-20
dc.date.copyright2018-06-29
dc.date.issued2018
dc.date.submitted2018-06-20
dc.identifier.citationReferences
[1] https://www.statista.com/statistics/325809/worldwide-medical-technology-revenue/
[2] https://www.ntuh.gov.tw/telehealth/default.aspx
[3] https://www.theranos.com/
[4] https://en.wikipedia.org/wiki/Theranos
[5] http://www.givenimaging.com/en-int/Pages/default.aspx
[6] https://www.proteus.com/
[7] https://googleblog.blogspot.tw/2014/01/introducing-our-smart-contact-lens.html
[8] Y.-J. Huang, ” Design and Implementation of Fully-integrated Smart CMOS Biomedical SoCs,” Doctoral Dissertation, Jan. 2014.
[9] S. Ayazian, V. A. Akhavan, E. Soenen, and A. Hassibi,” A Photovoltaic-Driven and Energy-Autonomous CMOS Implantable Sensor,” IEEE Trans. Biomed. Circuits and systems, vol. 6, pp. 336-343, Aug. 2012.
[10] Christian C.Enz and Gabor C. Teams, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” proceedings of the IEEE, Nov 1996.
[11] Tao Yin, Haigang Yang, Quan Yuan, and Guoping Cui, “Noise analysis and simulation of chopper amplifier,” APCCAS 2006.
[12] Burr-Brown (1997) INA122: single supply, micropower instrumentation amplifier, online, Oct. 1997.
[13] BurkeM, Gleeson D (2000) A micropower dry-electrode ECG preamplifier, IEEE T, Bio-Med Eng. 47(2):155–162, Feb. 2000.
[14] Pallas-Areny R, Webster J (1993) AC instrumentation amplifier for bioimpedance
measurements, IEEE Trans Bio-Med Eng. 40(8):830–833, Aug. 1993.
[15] Spinelli E, Martinez N, Mayosky M, Pallas-Areny R (2004) A novel fully differential biopotential amplifier with DC suppression. IEEE Trans Bio-Med Eng. 51(8):1444–1448, Aug 2004.
[16] Spinelli E, Pallas-Areny R, MayoskyM2003 AC-coupled front-end for biopotential measurements. IEEE Trans Bio-Med Eng. 50(3):391–395, March 2003.
[17] Huijsing JH (2001) Operational amplifiers: theory and design. Kluwer Academic, Springer; 1 edition (December 2000).
[18] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 4, pp. 287–294, Apr. 1987.
[19] G. Nicollini and C. Guadiani, “A 3.3-V 800-nV noise, gain-programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, vol. 28, no. 8, pp. 915–920, Aug. 1993.
[20] Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965, June 2003.
[21] Olsson R, Gulari A, Wise K (2003) A fully-integrated bandpass amplifier for extracellular neural recording. Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference, 20–22 March 2003, pp.165–168.
[22] Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J Solid-State Circuits 42(1):123–133, Jan. 2007.
[23] A. Behzad ET. AL, “A fully integrated MIMO multiband direct conversion CMOS transceiver for WLAN applications (802.11n),” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2795-2808, Dec. 2007.
[24] J.-Y. Chen, M. P. Flynn and J. P. Hayes, “A Fully integrated auto-calibrated super-regenerative receiver in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1976-1985, Sep. 2007.
[25] Y.-T. Lin, T. Wang, S.-S. Lu and G.-W. Huang, “A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network ,” IEEE International Asian Solid-State Circuit Conference, 2005.
[26] C. J. Woolf and R. J. Mannion, “Neuropathic pain: Aetiology, symptoms, mechanisms, and management,” Lancet, vol. 353, no. 9168, pp.1959–1964, Jun. 1999.
[27] H. Merskey, N. Bogduk, “Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms”, Seattle: IASP Press; 1994; 59–71
[28] Trigeminal Neuralgia Fact Sheet, National Institute of Neurological Disorders and Stroke. Available online: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Trigeminal-Neuralgia-Fact-Sheet
[29] J. Sato, T. Saitoh, K. Notani, et al. “Diagnostic significance of carbamazepine and trigger zones in trigeminal neuralgia”. Oral Surg Oral Med Oral Pathol 2004; 97:18–22.
[30] http://www.mayfieldclinic.com/PE-TRIN.htm
[31] K. Malik and H. T. Benzon, “Radiofrequency applications to dorsal root ganglia: A literature review,” Anesthesiology, vol. 109, no. 3, pp. 527–542, Sep. 2008.
[32] P. Verrills, B. Mitchell, D. Vivian, and C. Sinclair, “Peripheral nerve stimulation: A treatment for chronic low back pain and failed back surgery syndrome?” Neuromodulation, vol. 12, no. 1, pp. 68–75, Jan. 2009.
[33] M. Sluijter, E. Cosman, and I. Rittman, “The effects of pulsed radiofrequency field applied to the dorsal root ganglion—A preliminary report,” Pain Clin., vol. 11, no. 2, pp. 109–117, 1998.
[34] R. Melzack and P. D. Wall, “Pain mechanisms: A new theory,” Science, vol. 150, no. 699, pp. 971–979, Nov. 1965.
[35] D. Byrd and S. Mackey, 'Pulsed radiofrequency for chronic pain,' Current Pain and Headache Reports, vol. 12, pp. 37-41, 2008.
[36] M. L. W. Dan C. Martin, L. Ashley Mullinax, Natalie L. Clarke, Jay A. Homburger, Ines H. Berger,, 'Pulsed Radiofrequency Application in the Treatment of Chronic Pain,' Pain Practice, vol. 7, pp. 31-35, 2007.
[37] S. Hagiwara, H. Iwasaka, N. Takeshima, and T. Noguchi, 'Mechanisms of analgesic action of pulsed radiofrequency on adjuvant-induced pain in the rat: Roles of descending adrenergic and serotonergic systems,' European Journal of Pain, vol. 13, pp. 249-252, 2009.
[38] R. R.-L. G. B. Racz, 'Radiofrequency Procedures,' Pain Practice, vol. 6, pp. 46-50, 2006.
[39] P. Richebe, J. P. Rathmell, and T. J. Brennan, “Immediate early genes after pulsed radiofrequency treatment: Neurobiology in need of clinical trials,” Anesthesiology, vol. 102, pp. 1–3, Jan. 2005.
[40] T. T. Simopoulos, J. Kraemer, J. V. Nagda, M. Aner, and Z. H. Bajwa, “Response to pulsed and continuous radiofrequency lesioning of the dorsal root ganglion and segmental nerves in patients with chronic lumbar radicular pain,” Pain Physician, vol. 11, pp. 137–144, Mar.–Apr. 2008.
[41] H. W. Chiu, M. L. Lin, C.W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C. Lee, Y. R. Wen, and S. S. Lu, “Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 350–359, Dec. 2010.
[42] J. Van Zundert, S. Brabant, E. Van de Kelft, A. Vercruyssen, and J. P. Van Buyten, “Pulsed radiofrequency treatment of the Gasserian ganglion in patients with idiopathic trigeminal neuralgia,” Pain, vol. 104, pp. 449-52, Aug. 2003.
[43] N. Chua, W. Halim, T. Beems, K. Vissers, “Pulsed Radiofrequency Treatment for Trigeminal Neuralgia”, Anesthesiology and Pain Medicine, vol. 1, pp.257-261, Apr. 2012.
[44] J. B. Renfroe, J. W. Wheless, “Earlier use of adjunctive vagus nerve stimulation therapy for refractory epilepsy”, Neurology 2002 (Suppl 4):S26–S31
[45] F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, and R. Genov,“The 128-channel fully differential digital integrated neural recordingand stimulation interface,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 3, pp. 149–161, Jun. 2010.
[46] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, Y.-L. Hsin, S.-F. Liang, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, and C.-Y. Wu, “A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control,” IEEE J.
Solid-State Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014.
[47] H.-G. Rhew, J. Jeong, J. A. Fredenburg, S. Dodani, P. Patil, and M. P. Flynn, “A wirelessly powered log-based closed-loop deep brain stimulation SoC with two-way wireless telemetry for treatment of neurological disorders,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2012, pp.70–71.
[48] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, “A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 731–745, Apr. 2011.
[49] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. P. Velazquez, and R. Genov, “64-channel UWB wireless neural vector analyzer SOC with a closed-loop phase synchrony-triggered neurostimulator,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2494–2510, Oct. 2013.
[50] D. B. Shire, S. K. Kelly, J. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, O. Mendoza, L. Theogarajan, J. L. Wyatt, and J. F. Rizzo, “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502–2511, Oct. 2009.
[51] C.W. Lin, H.W. Chiu, M.L. Lin, C.H. Chang, IH. Ho, P. H. Fang, C. L. Wang, Y. C Li, Y. R Wen and S.S. Lu , “Pain Control On Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC,” in IEEE ISSCC Dig. Tech. Papers, pp. 234-235, Feb. 2010.
[52] H. W. Chiu, M. L. Lin, C. W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C. Lee, Y. R. Wen, and S. S. Lu, “Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC,” IEEE Trans. Biom. Circuits Syst., vol. 4, pp. 350-359, Dec. 2010.
[53] W. T. Tseng, C. T. Yen, and M. L. Tsai, “A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats,” Journal of Neuroscience Methods, vol. 201, pp. 368-376, Oct 15 2011.
[54] Y. Tsuboi, , et al. “Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats”. Pain 2004;111:323–34.
[55] J. Kitagawa, et al. “Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy”, European Journal of Neuroscience, Vol. 24, pp. 1976–1986, 2006
[56] C.-Y. Hsiao, et al. “Irreversible Electroporation: A Novel Ultrasound-guided Modality for Non-thermal Tumor Ablation”, Journal of Medical Ultrasound, vol. 25, issue 4, pp. 195–200, Dec. 2017.
[57] D. Christensen, et al. “Effect of gabapentin and lamotrigine on mechanical allodynia-like behavior in a rat model of trigeminal neuropathic pain”, Pain 93(2001), pp. 147–153.
[58] J. J. Idanpaan-Heikkila, et al. “Pharmacological studies on a rat model of trigeminal neuropathic pain: baclofen, but not carbamazepine, morphine or tricyclic antidepressants, attenuates the allodynia-like behaviour”, Pain 79 (1999), pp. 281–290.
[59] J. Petrofsky, M. Laymon, M. Prowse, S. Gunda, and J. Batt, “The transfer of current through skin and muscle during electrical stimulation with sine, square, russian and interferential waveforms,” J. Med. Eng. Technol., vol. 33, pp. 170–181, 2009.
[60] J. Coleman, “Complications of snoring, upper airway resistance syndrome, and obstructive sleep apnea syndrome in adults,” Otolaryngol. Clin. N. Am. 1999, 32, 223–234.
[61] National Institutes of Health, National Institutes of Health Sleep Disorders Research Plan, November 2011.
https://www.nhlbi.nih.gov/health-pro/resources/sleep/nih-sleep-disorders-research-plan-2011 (1 October 2011).
[62] Standards of Practice Committee of the American Sleep Disorders Association. “Practice parameters for the indications for polysomnography and related procedures.” Sleep 1997, 20, 406–422.
[63] T. Gislason; B. Benediktsdottir, “Snoring, apnea episodes and nocturnal hypoxemia among children 6 months to 6 years old: An epidemiologic study of lower limit of prevalence.” Chest 1995, 107, 963–966.
[64] A. J. Pitsis, M. A. Darendeliler, H. Gotsopoulos, P. Petocz, P. A. Cistulli, “Effect of vertical dimension on efficacy of oral appliance therapy in obstructive sleep apnea.” Am. J. Respir. Crit.Care Med. 2002, 166, 860–864.
[65] M. Kuhl, P. Gieschke, D. Rossbach, S. A. Hilzensauer, P. Ruther, O. Paul, Y. A. Manoli, “Telemetric Stress-Mapping CMOS Chip with 24 FET-Based Stress Sensors for Smart Orthodontic Brackets.” In Proceedings of the2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE ISSCC), San Francisco, CA, USA, 20–24 February 2011.
[66] M. Kuhl, P. Gieschke, D. Rossbach, S. A. Hilzensauer, P. Ruther, O. Paul, Y. A. Manoli, “Wireless Stress Mapping System for Orthodontic Brackets Using CMOS Integrated Sensors.” IEEE J. Solid-State Ciruits2013, 48, 2191–2202.
[67] S. Ingmar, “Wireless sensor system for monitoring spatially resolved tongue pressure.” Proc. Sens. 2011, 2011, 628–633.
[68] A. Atalay, O. Atalay, M. D. Husain, A. Fernando, P. Potluri, “Piezofilm yarn sensor-integrated knitted fabric for healthcare applications.” J. Ind. Text. 2017, 47, 505–521.
[69] J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. de Jonckheere, M. Jeanne, D. Kinet, B. Paquet, A. Depre, L. T. D’Angelo, et al. “Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement.” IEEE Sens. J. 2012, 12, 246–254.
[70] Atalay, O.; Kennon, W.R.; Demirok, E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sens. J. 2015, 15, 110–122.
[71] J. A. G. Stierwalt, SR. Youmans, “Tongue measures in individuals with normal and impaired swallowing”, Amer. J. Speech-Lang. Path., 16:148-156, 2007
[72] S. R. Youmans, G. L. Youmans, J. A. G. Stierwalt, “Differences in tongue strength across age and gender: is there a diminished strength reserve?” Dysphagia, 24:57-65, 2009
[73] H. M. Clark, K. O'Brien, A. Calleja, S. N. Corrie, “Effects of directional exercise on lingual strength”, J. Speech Lang. Hear. Res. 52:1034-1047, 2009
[74] C.-W. Ma, T.-H. Lin, Y.-J. Yang, “Tunneling piezoresistive tactile sensing array fabricated by a novel fabrication process with membrane filters,” Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on, Jan. 2015.
[75] C.-W. Ma, C.-M. Chang, T.-H. Lin, Y.-J. Yang, “Highly Sensitive Tactile Sensing Array Realized Using a Novel Fabrication Process with Membrane Filters,” IEEE Journal of Mircoelectromechanical Systems, vol. 24, no.6, pp. 2062–2070, 2015
[76] T.-H. Lin, C.-M. Chang, Y.-M. Huang, C.-W. Ma, T.-D. Wang, S.-S. Lu, and Y.-J. Yang, “Continuous Pulse Pressure Measuring Device Using Pressure Sensing Elements with Microstructures,” The 9th IEEE International Conference on Nano/Molecular Medicine and Engineering (IEEE NANOMED 2015), Hawaii, USA, Nov. 15-Nov. 18, 2015.
[77] Y.-J. Huang, T.-H. Tzeng, T.-W Lin, C.-W. Huang, P.-W. Yen, P.-H. Kuo, C.-T. Lin, S.-S. Lu, “A Self-Powered CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications”, IEEE Journal of Solid-State Circuits, vol.49, no.4, pp.851-866, Apr. 2014
[78] H.-G. Rhew, J. Jeong, J.A. Fredenburg, S. Dodani, P. Patil, M.P. Flynn, “A wirelessly powered log-based closed-loop deep brain stimulation SoC with two-way wireless telemetry for treatment of neurological disorders”, IEEE Sym. on VLSI Cir. Dig., 2012
[79] K.-Y. Yeh, K. Tang, C.-C. Wu, C.-M. Chang, T. Wang, Y.-J. Chen, W.-C. Kuo, Y.-J. Yang, S.-S. Lu, “A Wirelessly Rechargeable Integrated System for Automatic Sleep Monitoring in a Smart Oral Appliance”, AUMST, vol. 7, no. 2, 2017
[80] G. R. Ruschau, S. Yoshikawa, and R. E. Newnham, “Resistivities ofconductive composites,” J. Appl. Phys., vol. 72, no. 3, pp. 953–959,1992.
[81] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunnelingeffect in a polymer/carbon nanotube nanocomposite strain sensor,” ActaMater., vol. 56, no. 13, pp. 2929–2936, Aug. 2008.
[82] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed.London, U.K.: Taylor & Francis, 1992.
[83] A. Khosla, B. L. Gray, “Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer.” Mater. Lett. 2009, 63, 1203–1206. “”
[84] C.-W. Huang, et al., “A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process”, IEEE Sym. on VLSI Cir. Dig., 2012, pp. 124-125.
[85] R. F. Yazicioglu, Kim Sunyoung, T. Torfs, Kim Hyejung, C. Van Hoof, 'A 30 uW Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring,' IEEE Journal of Solid-State Circuits, vol.46, no.1, pp.209-223, Jan. 2011
[86] W.-S. Liew, X.-D. Zou, L.-B. Yao, Y. Lian, 'A 1-V 60-µW 16-channel interface chip for implantable neural recording,' IEEE Custom Integrated Circuits Conference, pp.507-510, 13-16 Sept. 2009
[87] R. F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof , 'A 60 uW 60 nV/ √Hz Readout Front-End for Portable Biopotential Acquisition Systems,' IEEE Journal of Solid-State Circuits, vol.42, no.5, pp.1100-1110, May 2007
[88] R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof ,'A 200 uW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems,' IEEE Journal of Solid-State Circuits, vol.43, no.12, pp.3025-3038, Dec. 2008
[89] H. Hong and G. Lee, “A 65-fJ/conversion-step 0.9-V 200kS/s rail-to-rail 8-bit successive approximation ADC, ” IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2161-2168, Oct. 2007
[90] C.-C. Liu; S.-J. Chang; G.-Y. Huang; Y.-Z. Lin; “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, April 2010, pp. 731-740
[91] D. A. Johns, Ken Martin, “Analog Integrated Circuit Design”,1997
[92] M.K. Raja, Yong Ping Xu, 'A 52 pJ/bit OOK transmitter with adaptable data rate,' IEEE Asian Solid-State Circuits Conference, A-SSCC '08, pp.341-344, 3-5 Nov. 2008
[93] C.-H. Lin, et al., “A Li-Ion Battery Charger With Smooth Control Circuit and Built-In Resistance Compensation for Achieving Stable and Fast Charging”, IEEE Trans. on Circuit and Systems-I, vol. 57, pp.506-517, 2010
[94] G.-H. Zhou, J.-P. Wang, ”Constant-Frequency Peak-Ripple-Based Control of Buck Converter in CCM: Review, Unification, and Duality”, IEEE Transactions in Industrial Electronics, vol.61, no.3, Mar. 2014
[95] M.-R. Leng, S.-G. Xu, “The Novel Ripple-Based I2 Type Control Technique for Buck Converters with Constant Current Output”, International Power Electronics and Motion Control Conference, 2016
[96] E. C. Brown, S. Cheng, DK McKenzie, JE Butler, SC Gandevia, LE Bilston, “Tongue and Lateral Upper Airway Movement with Mandibular Advancement”, Sleep, vol.36, issue 3,pp.397-404, Mar. 2014
[97] T. Ogawa, J. Long, K. Sutherland, ASL Chan, K. Sasaki, PA. Cistulli, “Effect of mandibular advancement splint treatment on tongue shape in obstructive sleep apnea”, Sleep, vol.19, issue 3, pp.857-863, Sep. 2015
[98] J.A. Rogers, et al., “Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring”, Nature Comm., vol.5, id.4496, Aug. 2014
[99] http://www.finapres.com/Products/Finapres-NOVA
[100] M. Y.-M. Wong, et al., “An Evaluation of the Cuffless Blood Pressure Estimation Based on Pulse Transit Time Technique: a Half Year Study on Normotensive Subjects”, Cardiovascular Engineering, Mar. 2009, vol. 9:1, pp. 32-38
[101] G. Fortino, et al., “PPG-based Methods for Non Invasive and Continuous Blood Pressure Measurement: an Overview and Development Issues in Body Sensor Networks”, Medical Measurements and Applications Proceedings (MeMeA), 2010 IEEE International Workshop on, Apr. 2010
[102] Y. Kurylyak, et al., “A Neural Network-based Method for Continuous Blood Pressure Estimation from a PPG Signal”, Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International, May 2013
[103] C.-W. Ma, T.-H. Lin, Y.-J. Yang, “Tunneling Piezoresistive Tactile Sensing Array Fabricated by Novel Fabrication Process with Membrane Filters”, MEMS, Jan. 2015, pp. 249-252.
[104] T.-H. Lin, C.-M. Chang, Y.-M. Huang, C.-W. Ma, T.-D. Wang, S.-S. Lu, and Y.-J. Yang, “Continuous Pulse Pressure Measuring Device Using Pressure Sensing Elements with Microstructures,” The 9th IEEE International Conference on Nano/Molecular Medicine and Engineering (IEEE NANOMED 2015), Hawaii, USA, Nov. 15-Nov. 18, 2015.
[105] C.-W. Huang, et al., “A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process”, Sym. on VLSI Cir. Dig., 2012, pp. 124-125.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69646-
dc.description.abstract隨著人口高齡化的持續惡化,健康照護成為了近年來最受關切的課題之一,尤其是針對老年人的照護。CMOS全整合系統仍然具有很大的發展潛力,並且將在未來於建立對健康照護友善的環境中扮演一個不可或缺的角色。本論文將對於使用系統單晶片(SoC) 技術的CMOS全整合智慧型系統做一個全面性的介紹。關鍵子電路和感測器的設計概念及實體操作展示也都有做描述。除此之外,三個針對不同醫療電子應用所特別設計,使用不同CMOS系統單晶片及感測器的全整合智慧型系統的設計內容也都會一一揭露。以下為所研究之應用於生醫方面的全整合智慧型系統的摘要介紹:
1. 以雙模式脈衝式射頻電刺激來即時舒解三叉神經痛的可植入式系統單晶片
此系統單晶片是利用TSMC 0.35μm CMOS製程技術來實現,所針對的病症是三叉神經痛。三叉神經痛是源自於三叉神經發炎所引起在面部的極度疼痛感及肌肉痙攣。馬上抑制三叉神經痛發作時所引起的劇烈疼痛是其解決方案的第一目標。此使用脈衝式射頻電刺激的可植入式系統只需要簡單地透過手持裝置的控制,就可以隨時隨地以電刺激的方式來舒緩三叉神經痛。利用雙模式的脈衝式射頻電刺激以及可重組式的刺激參數可以針對每個不同的病患使電刺激的療效達到最佳化。溫度感測與訊號的超取樣可進一步的確保此系統使用上的安全性。在即時電刺激參數的監測及動物實驗的部分都有進行實體操作來對此系統的功能做驗證。
2. 應用於睡眠呼吸中止症治療之具無線監測及充電功能的智慧型牙套
此智慧型牙套中使用的系統單晶片是利用UMC 0.18μm CMOS製程技術來實現,所針對的病症是睡眠呼吸中止症。傳統的牙套療法對於治療睡眠呼吸中止症來說是十分有效果且受歡迎的,但是針對個別病患來達到最佳的療效是非常耗時間的。此智慧型牙套的設計具有自動收集在治療過程中關於舌頭位置移動的生理資訊之功能。為了偵測來自於舌頭的微小壓力,一個具有超高靈敏度的穿隧式感測器陣列也整合在此系統之中。一個尺寸為 4.5×2.5×0.9 cm3的系統原型模組整合在樣本牙套中用來做為實作展示在連續時間中偵測舌頭位置移動的功能,此功能在量測的結果中得到了驗證。此系統設計的目的是增加牙套療法的效率,並成為解決睡眠呼吸中止症的完整解決方案。
3. 以雲端計算輔助之無氣囊可穿載式脈壓即時監測整合系統
此系統所使用的晶片是利用UMC 0.18μm CMOS製程技術來實現,所針對的應用是即時脈壓監測。脈壓的變動跟動脈中的血流變化是息息相關的,其是在心血管疾病的早期診斷中的一個重要指標。為了偵測來自於腕動脈脈搏的微小壓力,一個具有超高靈敏度的穿隧式感測器也整合在此系統之中。在讀出電路將來自脈壓變化的訊號放大並轉換為數位訊號之後,系統的無線通訊模組將此資料以無線傳輸到智慧型裝置及雲端儲存設備中。即時並持續的脈壓監測從感測器端的偵測到最後的雲端計算,此完整的系統功能都在此做實作的展示。透過數位訊號的處理,長期的脈壓監測可以改善無氣囊裝置的準確度,而量測到的數據可以透過雲端的多種運算法來完成心血管突發事件的快篩。
zh_TW
dc.description.abstractAs the population aging keeps growing, healthcare is one of the most concerned topic in recent years, especially for the elderly. CMOS fully-integrated system is going to play an indispensable role in building a healthcare-friendly environment and still has great potential for further development. An overview of CMOS fully-integrated smart biomedical systems using the system-on-a-chip (SoC) technique is presented in this dissertation. Design concepts of key circuit blocks, sensors, and demonstration are also addressed. Three smart systems incorporated with different CMOS SoCs and sensors, which are specifically designed and implemented for different biomedical applications, are totally put forth.
First, a dual-mode pulsed radio-frequency (PRF) stimulation SoC fabricated in TSMC 0.35μm CMOS process is realized for trigeminal neuralgia alleviation on demand. Trigeminal neuralgia is an inflammation of the trigeminal nerve, causing extreme pain and muscle spasms in the face. To stop this extreme pain immediately when it occurs is the top requirement for a solution to trigeminal neuralgia. The implantable system using PRF stimulation provides prompt pain alleviation by simply controlling a handheld device anywhere anytime. Dual-mode PRF stimulation and reconfigurable parameters are utilized to optimize the effectiveness for each patient. Temperature sensing and signal oversampling are also employed to ensure the safety. Real-time stimulation parameter monitoring and animal studies are demonstrated for the verification of this system.
Next, a wireless monitoring smart oral appliance with a tunneling sensor array for sleep apnea treatment is presented. Conventional oral appliance therapy is effective and popular for OSA treatment, but making a perfect fit for each patient is time-consuming. This smart oral appliance, which is capable of intelligently collecting the physiological data about tongue movement through the whole therapy, is specifically designed. A tunneling sensor array with an ultra-high sensitivity is incorporated to accurately detect the subtle pressure from the tongue. A compact prototype module, whose size is 4.5×2.5×0.9 cm3, is implemented and embedded inside the oral appliance to demonstrate the tongue movement detection in continuous time frames. The functions of this design are verified by the presented measurement results. This design aims to increase efficiency and make it a total solution for OSA treatment.
Last, a cuffless wearable system with cloud computing assistance is realized for real-time pulse pressure monitoring. The pulse pressure variation associated with arterial blood flow is a valuable indicator for early diagnosis of cardiovascular diseases. To detect the subtle wrist artery pressure, a tunneling sensor array with an ultra-high sensitivity is utilized in this system. After the readout circuit amplifies and converts the pulse pressure-induced signal, a wireless communication module transmits the data to intellectual devices and eventually to the cloud storage. Real-time and sustainable pulse pressure monitoring is demonstrated from sensor detection to cloud computing. Through the digital signal processing, long-term pulse pressure monitoring improves the accuracy of cuffless applications, and measured data can accomplish cardiovascular event fast screening after being processed by Hilbert Huang transform (HHT), pulse rate variability (PRV), and multi-scale entropy (MSE) analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:22:17Z (GMT). No. of bitstreams: 1
ntu-107-D98943028-1.pdf: 10364715 bytes, checksum: fd72b7152c00fe83963b8cd5f5c6ddb9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
Chapter 1 Introduction 1
1.1 Biomedical Electronics in Daily Lives 1
1.2 Fully-integrated CMOS Biomedical Systems 5
1.3 List of Contributions 9
1.4 Organization of This Dissertation 9
Chapter 2 CMOS Biomedical SoC Design Fundamentals 11
2.1 Architecture of CMOS Biomedical SoC 11
2.2 Energy Harvester and Power Management Unit 13 2.3 Bio-sensors and Actuators 14 2.4 Sensor Interface Circuit 15
2.4.1 Noise Cancellation Techniques 15
2.4.2 Amplifier Topology 19 2.5 Analog-to-Digital Converter (ADC) 23 2.6 Wireless Communication 25
2.7 Design Considerations and Challenges of CMOS Biomedical SoC 27
Chapter 3 A Dual-mode Pulsed Radio-Frequency Stimulation CMOS SoC for Trigeminal Neuralgia Alleviation on Demand 28
3.1 Introduction 29
3.1.1 Target Disease 29
3.1.2 Cause and Current Treatment Options 29
3.1.3 Pulsed Radio-Frequency (PRF) Stimulation 30
3.1.4 State-of-the-arts Survey 30
3.1.5 Application Scenario 31
3.2 System Architecture 33
3.2.1 Circuit Blocks 33
3.2.2 Pattern Generator 34
3.2.3 Micro-Controller Unit (MCU) 37
3.2.4 Analog Front-end (AFE) and 10-bit SAR ADC 39
3.2.5 RF-DC, and Boost Converter 42
3.3 Chip Measurement Results 43
3.4 Animal Study 48
3.4.1 Electrode Implantation and Neural Recording 48
3.4.2 Behavioral Test 50
3.4.3 IONCCI Surgery 51
3.4.4 PRF Stimulation 52
3.4.5 Histology 53
3.4.6 Results and Discussion 54
3.5 Conclusion 55
Chapter 4 A Wireless Monitoring Smart Oral Appliance with a Tunneling Sensor Array for Sleep Apnea Treatment 57
4.1 Introduction 58
4.2 Methods and Materials 60
4.2.1 System Application Scenario 60
4.2.2 Tunneling Piezoresistive Sensor 61
4.2.3 Design of System-on-a-Chip (SoC) Enabled Monitoring System 63
4.2.4 Experimental Protocol 65
4.3 Results and Discussion 66
4.3.1 Tunneling Piezoresistive Sensor Measurement 66
4.3.2 Tongue Position Detecting prototype Module and Its Demonstration Results 70
4.3.3 Measurement Results of Wireless Charging and Communication 74
4.4 Conclusion 78
Chapter 5 A Cuffless Wearable System with Cloud Computing Assistance for Real-time Blood Pressure Monitoring 79
5.1 Introduction 80
5.2 System Design 81
5.3 Tunneling Piezoresistive Sensor 83
5.4 Sensor Interface Circuit Design 85
5.5 Experimental Results 86
5.6 Digital Signal Processing 90
5.6 Conclusion 94
Chapter 7 Conclusions 95
References 99
dc.language.isoen
dc.title應用於生醫方面的CMOS全整合智慧型系統之設計及實現zh_TW
dc.titleDesign and Implementation of CMOS Fully-Integrated Smart Systems for Biomedical Applicationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee孫台平(Tai-Ping Sun),楊燿州(Yao-Joe Yang),林宗賢(Tsung-Hsien Lin),林致廷(Chih-Ting Lin),林木鍊(Mu-Lien Lin)
dc.subject.keyword系統單晶片,脈衝式射頻電刺激,三叉神經痛,牙套,穿隧式感測器,睡眠呼吸中止症,無氣囊,zh_TW
dc.subject.keywordSoC,pulsed radio-frequency,trigeminal neuralgia,oral appliance,tunneling sensor,sleep apnea,cuffless,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201801007
dc.rights.note有償授權
dc.date.accepted2018-06-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved