請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賀培銘(Pei-Ming Ho) | |
| dc.contributor.author | Chi-Hsien Yeh | en |
| dc.contributor.author | 葉啟賢 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:22:26Z | - |
| dc.date.available | 2012-07-10 | |
| dc.date.available | 2021-05-17T09:22:26Z | - |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-01-31 | |
| dc.identifier.citation | [1] P. M. Ho and Y. Matsuo, “M5 from M2,” JHEP 0806, 105 (2008) [arXiv:0804.3629
[hep-th]]. [2] P. M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, “M5-brane in three-form flux and multiple M2-branes,” JHEP 0808, 014 (2008) [arXiv:0805.2898 [hep-th]]. [3] P. M. Ho and C. H. Yeh, “D-brane in R-R Field Background,” JHEP 1103, 143 (2011) [arXiv:1101.4054 [hep-th]]. [4] R. G. Leigh, “Dirac-Born-Infeld Action from Dirichlet Sigma Model,” Mod. Phys. Lett. A 4, 2767 (1989). [5] E. Witten, “Bound states of strings and p-branes,” Nucl. Phys. B 460, 335 (1996) [arXiv:hep-th/9510135]. [6] J. Polchinski, “Tasi lectures on D-branes,” [hep-th/9611050]. [7] S. Forste, “Strings, branes and extra dimensions,” Fortsch. Phys. 50, 221 (2002) [arXiv:hep-th/0110055]. [8] C. V. Johnson, “D-branes,” Cambridge, USA: Univ. Pr. (2003) 548 p. [9] C. S. Chu and P. M. Ho, “Noncommutative open string and D-brane,” Nucl. Phys. B 550, 151 (1999) [arXiv:hep-th/9812219]. [10] C. S. Chu and P. M. Ho, “Constrained quantization of open string in background B field and noncommutative D-brane,” Nucl. Phys. B 568, 447 (2000) [arXiv:hepth/ 9906192]. [11] V. Schomerus, “D-branes and deformation quantization,” JHEP 9906, 030 (1999) [arXiv:hep-th/9903205]. [12] N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999) [arXiv:hep-th/9908142]. [13] M. R. Douglas, “Branes within branes,” [hep-th/9512077]. [14] M. B. Green, J. A. Harvey, G. W. Moore, “I-brane inflow and anomalous couplings on d-branes,” Class. Quant. Grav. 14, 47-52 (1997). [hep-th/9605033]. [15] A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” In *Shifman, M.A. (ed.): The many faces of the superworld* 417-452. [hep-th/9908105]. [16] J. Bogaerts, A. Sevrin, J. Troost, W. Troost, S. van der Loo, “D-branes and constant electromagnetic backgrounds,” Fortsch. Phys. 49, 641-647 (2001). [hep-th/0101018]. [17] Y. Nambu, “Generalized Hamiltonian dynamics,” Phys. Rev. D 7, 2405 (1973). [18] F. Bayen, M. Flato, “Remarks concerning Nambu’s generalized mechanics,” Phys. Rev. D 11, 3049 (1975). [19] N. Mukunda, E. Sudarshan, “Relations between Nambu and Hamiltonian mechanics,” Phys. Rev. D 13, 2846 (1976). [20] L. Takhtajan, “On Foundation Of The Generalized Nambu Mechanics (Second Version),” Commun. Math. Phys. 160, 295 (1994) [arXiv:hep-th/9301111]. [21] For a review of the Nambu-Poisson bracket, see: I. Vaisman, “A survey on Nambu- Poisson brackets,” Acta. Math. Univ. Comenianae 2 (1999), 213. [22] P. K. Townsend, “M-theory from its superalgebra,” arXiv:hep-th/9712004. [23] P. S. Howe and E. Sezgin, “D = 11, p = 5,” Phys. Lett. B 394, 62 (1997) [arXiv:hepth/ 9611008]. [24] P. S. Howe, E. Sezgin and P. C. West, “Covariant field equations of the M-theory five-brane,” Phys. Lett. B 399, 49 (1997) [arXiv:hep-th/9702008]. [25] P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for a D = 11 five-brane with the chiral field,” Phys. Lett. B 398, 41 (1997) [arXiv:hep-th/9701037]. [26] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for the super-five-brane of M-theory,” Phys. Rev. Lett. 78, 4332 (1997) [arXiv:hep-th/9701149]. [27] M. Aganagic, J. Park, C. Popescu and J. H. Schwarz, “World-volume action of the M-theory five-brane,” Nucl. Phys. B 496, 191 (1997) [arXiv:hep-th/9701166]. [28] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M. Tonin, “On the equivalence of different formulations of the M theory five-brane,” Phys. Lett. B 408, 135 (1997) [arXiv:hep-th/9703127]. [29] W. -M. Chen and P. -M. Ho, “Lagrangian Formulations of Self-dual Gauge Theories in Diverse Dimensions,” Nucl. Phys. B 837, 1 (2010) [arXiv:1001.3608 [hep-th]]. [30] P. -M. Ho, K. -W. Huang and Y. Matsuo, “A Non-Abelian Self-Dual Gauge Theory in 5+1 Dimensions,” JHEP 1107, 021 (2011) [arXiv:1104.4040 [hep-th]]. [31] S. Kawamoto and N. Sasakura, “Open membranes in a constant C-field background and noncommutative boundary strings,” JHEP 0007, 014 (2000) [arXiv:hepth/ 0005123]. [32] P. M. Ho and Y. Matsuo, “A toy model of open membrane field theory in constant 3-form flux,” Gen. Rel. Grav. 39, 913 (2007) [arXiv:hep-th/0701130]. [33] J. Bagger and N. Lambert, “Modeling multiple M2’s, Phys. Rev. D 75, 045020 (2007) [arXiv:hep-th/0611108]. [34] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2- Branes,” Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]]. [35] J. Bagger and N. Lambert, “Comments On Multiple M2-branes,” JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]]. [36] A. Gustavsson, “Algebraic structures on parallel M2-branes,” Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]]. [37] L. Cornalba, M. S. Costa and R. Schiappa, “D-brane dynamics in constant Ramond- Ramond potentials and noncommutative geometry,” Adv. Theor. Math. Phys. 9, 355 (2005) [arXiv:hep-th/0209164]. [38] H. Ooguri and C. Vafa, “The C-deformation of gluino and non-planar diagrams,” Adv. Theor. Math. Phys. 7, 53 (2003) [arXiv:hep-th/0302109]. [39] J. de Boer, P. A. Grassi and P. van Nieuwenhuizen, “Non-commutative superspace from string theory,” Phys. Lett. B 574, 98 (2003) [arXiv:hep-th/0302078]. [40] K. Furuuchi and T. Takimi, “String solitons in the M5-brane worldvolume action with Nambu-Poisson structure and Seiberg-Witten map,” JHEP 0908, 050 (2009) [arXiv:0906.3172 [hep-th]]. [41] P. M. Ho, “A Concise Review on M5-brane in Large C-Field Background,” arXiv:0912.0445 [hep-th]. [42] C. S. Chu and D. J. Smith, “Towards the Quantum Geometry of the M5- brane in a Constant C-Field from Multiple Membranes,” JHEP 0904, 097 (2009) [arXiv:0901.1847 [hep-th]]. [43] J. Huddleston, “Relations between M-brane and D-brane quantum geometries,” arXiv:1006.5375 [hep-th]. [44] P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, “BLG-motivated Lagrangian formulation for the chiral two-form gauge field in D=6 and M5-branes,” Phys. Rev. D 80, 086008 (2009) [arXiv:0907.4596 [hep-th]]. [45] K. Furuuchi, “Non-Linearly Extended Self-Dual Relations From The Nambu-Bracket Description Of M5-Brane In A Constant C-Field Background,” JHEP 1003, 127 (2010) [arXiv:1001.2300 [hep-th]]. [46] C. H. Chen, P. M. Ho and T. Takimi, “A No-Go Theorem for M5-brane Theory,” JHEP 1003, 104 (2010) [arXiv:1001.3244 [hep-th]]; [47] C. H. Chen, K. Furuuchi, P. M. Ho and T. Takimi, “More on the Nambu-Poisson M5-brane Theory: Scaling limit, background independence and an all order solution to the Seiberg-Witten map,” arXiv:1006.5291 [hep-th]. [48] X. Bekaert, M. Henneaux and A. Sevrin, “Deformations of chiral two-forms in six dimensions,” Phys. Lett. B 468, 228 (1999) [arXiv:hep-th/9909094]. [49] A. M. Low, “Worldvolume Superalgebra Of BLG Theory With Nambu-Poisson Structure,” JHEP 1004, 089 (2010). [arXiv:0909.1941 [hep-th]]. [50] N. Nekrasov and A. S. Schwarz, “Instantons on noncommutative R**4 and (2,0) superconformal six-dimensional theory,” Commun. Math. Phys. 198, 689 (1998) [hep-th/9802068]. [51] M. Billo, M. Frau, I. Pesando, A. Lerda, “N = 1/2 gauge theory and its instanton moduli space from open strings in RR background,” JHEP 0405, 023 (2004). [hepth/ 0402160]. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6963 | - |
| dc.description.abstract | 本篇論文主要研究在Ramond-Ramond(R-R)背景場下D膜(D-brane)的有效場論。由於R-R背景場的存在,這樣的理論在背景場的方向會有體積保持不變的對稱性(volume-preserving diffeomorphism),這是這理論的主要特徵之一。之所以會研究這樣的理論,起源於最近有關M5膜在大C背景場的有效場論的研究。高一維度的理論可以透過丟掉場在這一維度的自由度,來得到低一維度在低能量極限的有效場論。因此這樣的分析方法常常會有一些多餘的場殘留在低一維度的理論中。要如何分辨哪些場是理論所必須的,而哪些場又是可以被積掉的,是這研究的核心部分。在這篇論文中,我們發現原先所預期出現的規範場被隱藏在某些場內,我們使用了對偶變換的方法來使這樣的規範場在理論中變的明顯。接著我們討論了在這樣的變換下,要如何求出規範場的規範對稱變換以及超對稱變換。我們研究了在規範對稱性以及體積保持不變性之下的協變量(covariant variables)應是什麼樣子的,並利用它們來使理論易於推廣到不同的情形。最後我們利用這理論所具有的超對稱去討論這理論的拓樸性質,即理論所允許的孤立子解。 | zh_TW |
| dc.description.abstract | In this paper, we try to understand the low energy effective theory of Dp-brane in large
R-R (p-1)-form field background. To construct the effective theory, we start with the M5-brane theory in large C-field background. The C-field background defines the 3-dimensional volume form in M5-brane theory. Hence, the M5-brane theory can be described as a Nambu-Poisson-bracket gauge theory with volume-preserving diffeomorphism symmetry (VPD). After doing double dimensional reduction, we obtain the effective theory of D4-brane in large C-field background. This theory has both the usual U(1) gauge symmetry and the new symmetry VPD. The VPD two-form gauge potential can be understood as the electric-magnetic dual of the one-form gauge field in the D4- brane theory. This theory is described by the one-form gauge field and the dual two-form gauge field at the same time. These results can be generalized to Dp-branes cases. In the last part of thesis, we study the supersymmetry (SUSY) algebra in this theory. We can calculate the central charges from the SUSY algebra in this theory, then we can know the possible topological quantities in this system. This interesting system may help us to understand M-theory, the models with volume-preserving diffeomorphism, the suitable low energy description of Dp-branes in different field backgrounds, some new soliton solutions, and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:22:26Z (GMT). No. of bitstreams: 1 ntu-101-D95222008-1.pdf: 520434 bytes, checksum: ebf41c7fb5dc24f22979b438c5ebebd5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Dp-Branes with Different Field Backgrounds . . . . . . . . . . . . . . . . 2 1.1.1 Terminology Explanation . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Dirac-Born-Infeld Action and Yang-Mills Gauge Theory . . . . . . 3 1.1.3 Dp-Branes with NS-NS and R-R Fields . . . . . . . . . . . . . . . 4 1.2 Large Field Background Effects . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Dp-Branes in constant NS-NS B-field Background . . . . . . . . . 6 1.2.2 Volume-Preserving Diffeomorphism and Nambu-Poisson Bracket . 7 1.3 A Review of M Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 M5 in Large C-Field Background 10 2.1 Nambu-Poisson M5 Theory . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Action of Nambu-Poisson M5 Theory . . . . . . . . . . . . . . . . . . . . 11 2.3 Symmetry of Nambu-Poisson M5 Theory . . . . . . . . . . . . . . . . . . 13 2.3.1 Gauge Symmetry and VPD . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Double Dimensional Reduction . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Poisson D4 Description From Nambu-Poisson M5 Theory . . . . . 15 3 D4 in R-R Three Form Background 17 3.1 D4-Brane in C Field Background via DDR . . . . . . . . . . . . . . . . . 17 3.1.1 Gauge Transformation of Fields . . . . . . . . . . . . . . . . . . . 18 3.1.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Dual Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 Equivalent Dual Action and Dual One Form Field . . . . . . . . . 20 3.2.2 Action after Dual Transformation . . . . . . . . . . . . . . . . . . 21 3.3 Covariant Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Gauge Symmetry after Dual Transformation . . . . . . . . . . . . 22 3.3.2 Covariant Variable with U(1) and VPD Symmetry . . . . . . . . . 23 3.3.3 Action with Covariant Variables . . . . . . . . . . . . . . . . . . . 24 3.4 Order Expansion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Zeroth Order Expansion . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 First Order Expansion . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3 Electric-Magnetic (EM) duality . . . . . . . . . . . . . . . . . . . 27 4 Extension and Application 29 4.1 Dp-Branes in R-R field Background . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Generalize VPD in R-R (p-1) Form Field Background . . . . . . . 30 4.1.2 Gauge Symmetry and Covariant Variables in Multiple Dp-Branes Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.3 Ansatz of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Couple to Matter fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 D4 in C Field Background with Matter Fields . . . . . . . . . . . 33 4.2.2 Order Expansion Analysis . . . . . . . . . . . . . . . . . . . . . . 34 4.2.3 Rewrite Action with Covariant Variables . . . . . . . . . . . . . . 35 4.3 Supersymmetry Transformation . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.1 Supersymmetry Law of Dual Field . . . . . . . . . . . . . . . . . 37 4.3.2 Non-linear Fermion Symmetry of Dual Field . . . . . . . . . . . . 38 4.3.3 Linear Supersymmetry Transformation . . . . . . . . . . . . . . . 38 4.3.4 Supersymmetry Transformation Law of B Field . . . . . . . . . 39 4.4 Topological Quantities of D4 in Large C Field Background . . . . . . . . 40 4.4.1 Central Charges of Superalgebra . . . . . . . . . . . . . . . . . . . 40 4.4.2 Instanton Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusion and Discussion 42 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A Conventions and Notations 44 B Some Useful Identities 46 C Suitable Scaling Limit in Different Cases 48 C.1 Scaling Limit of Dp-brane in B-field Background . . . . . . . . . . . . . . 48 C.2 Scaling Limit of M5 in Large C-field Background . . . . . . . . . . . . . 49 C.3 Scaling Limit of D4 in Large C-field Background . . . . . . . . . . . . . . 50 References 51 | |
| dc.language.iso | en | |
| dc.title | R-R背景場下的D膜理論 | zh_TW |
| dc.title | D-brane in R-R field background | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊瑋(Jiunn-Wei Chen),高賢忠(Hsien-Chung Kao),詹傳宗(Chuan-Tsung Chan),溫文鈺(Wen-Yu Wen) | |
| dc.subject.keyword | D膜理論,體積保持不變對稱性,R-R背景場, | zh_TW |
| dc.subject.keyword | D-brane,volume-preserving diffeomorphism,Ramond-Ramond fieldR field, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-02-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 508.24 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
