Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69568
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊立民(Lee-Ming Chuang)
dc.contributor.authorLynn Suen
dc.contributor.author蘇寧zh_TW
dc.date.accessioned2021-06-17T03:19:35Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-06-26
dc.identifier.citation1. Duan, G. and D. Walther, The Roles of Post-translational Modifications in the Context of Protein Interaction Networks. PLoS Comput Biol, 2015. 11(2).
2. Dalle-Donne, I., et al., Protein carbonylation in human diseases. Trends Mol Med, 2003. 9(4): p. 169-76.
3. Kim, W.J., J.H. Kim, and S.K. Jang, Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. Embo j, 2007. 26(24): p. 5020-32.
4. Liu, Z., et al., TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation. J Immunol, 2013. 191(2): p. 857-64.
5. Norris, P.C., et al., Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J Leukoc Biol, 2011. 90(3): p. 563-74.
6. Kawai, T., et al., Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999. 11(1): p. 115-22.
7. Beutler, B.A., TLRs and innate immunity. Blood, 2009. 113(7): p. 1399-407.
8. Kaukonen, K.M., et al., Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. Jama, 2014. 311(13): p. 1308-16.
9. Gotts, J.E. and M.A. Matthay, Sepsis: pathophysiology and clinical management. Bmj, 2016. 353: p. i1585.
10. Fink, M.P. and H.S. Warren, Strategies to improve drug development for sepsis. Nat Rev Drug Discov, 2014. 13(10): p. 741-58.
11. Freire, M.O. and T.E. Van Dyke, Natural resolution of inflammation. Periodontol 2000, 2013. 63(1): p. 149-64.
12. Cotran, R.S. and G. Majno, THE DELAYED AND PROLONGED VASCULAR LEAKAGE IN INFLAMMATION. I. TOPOGRAPHY OF THE LEAKING VESSELS AFTER THERMAL INJURY. Am J Pathol, 1964. 45: p. 261-81.
13. Croasdell, A., et al., PPARgamma and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res, 2015. 2015: p. 549691.
14. Mosser, D.M., The many faces of macrophage activation. J Leukoc Biol, 2003. 73(2): p. 209-12.
15. Porcheray, F., et al., Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol, 2005. 142(3): p. 481-9.
16. Gordon, S., Alternative activation of macrophages. Nat Rev Immunol, 2003. 3(1): p. 23-35.
17. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005. 5(12): p. 953-64.
18. Sun, S.C., The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol, 2017. 17(9): p. 545-558.
19. Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a001651.
20. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16: p. 225-60.
21. Sun, S.C., Non-canonical NF-κB signaling pathway. Cell Res, 2011. 21(1): p. 71-85.
22. Sears, C., et al., NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem, 1998. 273(3): p. 1409-19.
23. Finco, T.S. and A.S. Baldwin, Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity, 1995. 3(3): p. 263-72.
24. Chu, Z.L., et al., Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10057-62.
25. Fan, C.M. and T. Maniatis, Generation of p50 subunit of NF-kappa B by processing of p105 through an ATP-dependent pathway. Nature, 1991. 354(6352): p. 395-8.
26. Salmeron, A., et al., Direct phosphorylation of NF-kappaB1 p105 by the IkappaB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J Biol Chem, 2001. 276(25): p. 22215-22.
27. Beinke, S., et al., NF-κB1 p105 Negatively Regulates TPL-2 MEK Kinase Activity. Mol Cell Biol, 2003. 23(14): p. 4739-52.
28. Kravtsova-Ivantsiv, Y., et al., KPC1-mediated ubiquitination and proteasomal processing of NF-kappaB1 p105 to p50 restricts tumor growth. Cell, 2015. 161(2): p. 333-47.
29. Lawrence, T., D.A. Willoughby, and D.W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2002. 2(10): p. 787-95.
30. Straus, D.S. and C.K. Glass, Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev, 2001. 21(3): p. 185-210.
31. Goetzl, E.J., S. An, and W.L. Smith, Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. Faseb j, 1995. 9(11): p. 1051-8.
32. Coleman, R.A., W.L. Smith, and S. Narumiya, International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev, 1994. 46(2): p. 205-29.
33. Matsuoka, T. and S. Narumiya, Prostaglandin receptor signaling in disease. ScientificWorldJournal, 2007. 7: p. 1329-47.
34. Wang, D. and R.N. Dubois, Prostaglandins and cancer. Gut, 2006. 55(1): p. 115-22.
35. Marshall, P.J. and R.J. Kulmacz, Prostaglandin H synthase: Distinct binding sites for cyclooxygenase and peroxidase substrates. Archives of Biochemistry and Biophysics, 1988. 266(1): p. 162-170.
36. Mirzapoiazova, T., et al., Suppression of endotoxin-induced inflammation by taxol. European Respiratory Journal, 2007. 30(3): p. 429-435.
37. Szymanski, K.V., et al., <em>Streptococcus pneumoniae</em>-induced regulation of cyclooxygenase-2 in human lung tissue. European Respiratory Journal, 2012. 40(6): p. 1458-1467.
38. Fink, M.P., Prostaglandins and sepsis: still a fascinating topic despite almost 40 years of research. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2001. 281(3): p. L534-L536.
39. Tai, H.-H., et al., Prostaglandin catabolizing enzymes. Prostaglandins & Other Lipid Mediators, 2002. 68-69: p. 483-493.
40. Wu, Y.-H., et al., Structural Basis for Catalytic and Inhibitory Mechanisms of Human Prostaglandin Reductase PTGR2. Structure, 2008. 16(11): p. 1714-1723.
41. Chou, W.L., et al., Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem, 2007. 282(25): p. 18162-72.
42. Chang, E.Y.-C., et al., Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2. PLOS ONE, 2016. 11(1): p. e0147390.
43. Yun-Chia Chang, E., et al., Prostaglandin Reductase 2 Modulates ROS-Mediated Cell Death and Tumor Transformation of Gastric Cancer Cells and Is Associated with Higher Mortality in Gastric Cancer Patients. The American Journal of Pathology, 2012. 181(4): p. 1316-1326.
44. Hyde, C.A. and S. Missailidis, Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol, 2009. 9(6): p. 701-15.
45. Chen, I.J., et al., Targeting the 15-keto-PGE2-PTGR2 axis modulates systemic inflammation and survival in experimental sepsis. Free Radic Biol Med, 2018. 115: p. 113-126.
46. Reddy, R.C., Immunomodulatory role of PPAR-gamma in alveolar macrophages. J Investig Med, 2008. 56(2): p. 522-7.
47. Yao, L., et al., 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury. PLoS One, 2017. 12(4): p. e0176106.
48. Kim, E.H. and Y.J. Surh, 15-deoxy-Delta12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol, 2006. 72(11): p. 1516-28.
49. Nakanishi, M. and D.W. Rosenberg, Multifaceted roles of PGE2 in inflammation and cancer. Seminars in Immunopathology, 2013. 35(2): p. 123-137.
50. Koeberle, A. and O. Werz, Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol, 2015. 98(1): p. 1-15.
51. Norberg, J.K., et al., Targeting inflammation: multiple innovative ways to reduce prostaglandin E(2). Pharm Pat Anal, 2013. 2(2): p. 265-88.
52. Dolan, J.M., et al., Increased lethality and defective pulmonary clearance of Streptococcus pneumoniae in microsomal prostaglandin E synthase-1-knockout mice. Am J Physiol Lung Cell Mol Physiol, 2016. 310(11): p. L1111-20.
53. Frolov, A., et al., Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fatty Acids, 2013. 89(5): p. 351-8.
54. Brenneis, C., et al., Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem, 2011. 286(3): p. 2331-42.
55. Tai, H.H., et al., NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des, 2006. 12(8): p. 955-62.
56. Kang, G.J., et al., High-mobility group box 1 suppresses resolvin D1-induced phagocytosis via induction of resolvin D1-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase. Biochim Biophys Acta, 2015. 1852(9): p. 1981-8.
57. Choi, S.H., et al., Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis. J Clin Invest, 2014. 124(6): p. 2472-82.
58. Otani, T., et al., Levels of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase are reduced in inflammatory bowel disease: evidence for involvement of TNF-alpha. Am J Physiol Gastrointest Liver Physiol, 2006. 290(2): p. G361-8.
59. Sha, W., B. Brune, and A. Weigert, The multi-faceted roles of prostaglandin E2 in cancer-infiltrating mononuclear phagocyte biology. Immunobiology, 2012. 217(12): p. 1225-32.
60. Wang, C., et al., The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol, 2009. 10(7): p. 744-52.
61. Kong, F., et al., Inhibition of IRAK1 Ubiquitination Determines Glucocorticoid Sensitivity for TLR9-Induced Inflammation in Macrophages. J Immunol, 2017. 199(10): p. 3654-67.
62. Liu, Q., et al., E3 ubiquitin ligase Nedd4 inhibits AP-1 activity and TNF-alpha production through targeting p38alpha for polyubiquitination and subsequent degradation. Sci Rep, 2017. 7(1): p. 4521.
63. Heyninck, K. and R. Beyaert, A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci, 2005. 30(1): p. 1-4.
64. Waterfield, M.R., et al., NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell, 2003. 11(3): p. 685-94.
65. Ishikawa, H., et al., Chronic Inflammation and Susceptibility to Bacterial Infections in Mice Lacking the Polypeptide (p)105 Precursor (NF-κB1) but Expressing p50. J Exp Med, 1998. 187(7): p. 985-96.
66. Toledano, M.B., et al., N-terminal DNA-binding domains contribute to differential DNA-binding specificities of NF-kappa B p50 and p65. Mol Cell Biol, 1993. 13(2): p. 852-60.
67. Pineda-Molina, E., et al., Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry, 2001. 40(47): p. 14134-42.
68. Lecoq, L., et al., Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res, 2017. 45(9): p. 5564-76.
69. Hayden, M.S. and S. Ghosh, Shared Principles in NF-κB Signaling. Cell, 2008. 132(3): p. 344-362.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69568-
dc.description.abstract發炎反應可以透過許多促炎分子與抗發炎分子來調控訊息傳遞路徑,核因子NF-κB pathway為一經典的促炎信號傳導路徑,已有許多以此為標靶的抗發炎藥物被研究。NF-κB pathway可被多種誘導物刺激,包括促炎因子如IL-6,MCP-1和TNF-α,並隨後活化發炎因子。前列腺素也是參與發炎反應的分子之一,在先天性發炎反應中前列腺素及其代謝物的調節作用也已被廣泛研究也了解其重要性。 在本篇研究中,我們探討了前列腺素代謝物15-keto-PGE2的抗發炎性質。我們發現,於RAW 264.7細胞中在LPS刺激下15-keto-PGE2會透過抑制NF-κB pathway達到抗發炎的效果。15-keto-PGE2會抑制促炎因子的表達並且降低NF-κB調控基因表現量。我們也進一步證實15-keto-PGE2可造成 NF-κB轉錄因子的轉譯後修飾,其包括分別在p50及其先驅體p105第59位點的Cysteine以及 RelA,又稱p65第120位點的Cysteine。最後,我們證明了15-keto-PGE2加速了p105的降解,可能是透過泛素所調節的,而不影響其入核的機制。 最後,本篇研究證實了15-keto-PGE2對於調節發炎反應的重要性,也提供了一個未來可以使用15-keto-PGE2的抗發炎治療方法。zh_TW
dc.description.abstractThe inflammatory response can be depicted as coordinated activation of a myriad of signaling pathways that come together to regulate the expressions of both pro- and anti-inflammatory mediators. One of the most classic pro-inflammatory signaling pathway, the nuclear factor NF-κB pathway has long been studied as a target for new anti-inflammatory drugs. NF-κB pathway can be stimulated by several inducers, including pro-inflammatory cytokines such as IL-6, MCP-1, and TNF-α. Subsequently, pro-inflammatory genes will be activated. A class of molecules that also play a part in the inflammatory pathways are the prostaglandins. The regulatory roles that prostaglandins and their metabolites play in innate inflammation have also been extensively studied.
In this study, we investigate the anti-inflammatory property of a prostaglandin metabolite 15-keto-PGE2. We saw that 15-keto-PGE2 have anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by inhibiting the NF-κB inflammatory pathway. The treatment of 15-keto-PGE2 led to a reduction of the pro-inflammatory cytokine expressions and Igκ-mediated reporter activities. 15-keto-PGE2 further demonstrated post-translational modification to NF-κB transcription factors, NF-κB1, which include the p50 subunit and its precursor p105, and RelA, or p65, at Cysteine 59 and Cysteine 120 sites, respectively. Finally, we demonstrated that the treatment of 15-keto-PGE2 accelerated the degradation of p105, potentially ubiquitin-mediated yet it did not affect nuclear translocation of p50.
Taken together, our study affirms the significance of 15-keto-PGE2 in attenuating inflammatory responses and suggests a novel anti-inflammatory therapy for LPS-induced inflammation through administering 15-keto-PGE2.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:19:35Z (GMT). No. of bitstreams: 1
ntu-107-R04448025-1.pdf: 2361216 bytes, checksum: 3ce80f2cf2c796d355c39851d41af26f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... I
謝誌 .................................................................................................................................. II
Abstract ......................................................................................................................... III
中文摘要 ........................................................................................................................ IV
Table of contents ............................................................................................................. V
Introduction ..................................................................................................................... 1
1.1 Inflammation .............................................................................................................. 2
1.1.1 The progression and regulation of inflammation: onset to resolution ........................ 2
1.1.2 The role of macrophages in the face of inflammation .............................................. 4
1.2 The NF-κB inflammatory pathway .............................................................................. 6
1.2.1 Proteasomal processing and degradation of p105 .................................................... 7
1.3 Prostaglandins (PGs) ................................................................................................. 10
1.3.1 Prostaglandin E2 and its metabolite, 15-keto-PGE2 ................................................ 10
1.4 Experimental rationale ............................................................................................... 14
2. Materials and Methods ............................................................................................. 15
2.1 Cell Culture and Reagents.......................................................................................... 15
2.2 RNA Extraction and Quantitative PCR ................................................................. 15
2.3 Western Blot Analysis ........................................................................................... 15
2.4 Luciferase Reporter Assay ..................................................................................... 16
2.5 Immunoprecipitation and Proteomic Analysis ....................................................... 16
2.6 Plasmid mutagenesis .............................................................................................. 17
2.7 Nuclear-Cytoplasmic Fractionation ....................................................................... 18
3. Results ......................................................................................................................... 19
3.1 15-keto-PGE2 reduces pro-inflammatory gene expression in LPS-stimulated RAW264.7 cells ........................................................................................................... 19
3.2 Treatment of 15-keto-PGE2 inhibits NF-κB promoter activity in LPS-stimulated RAW264.7 cells ........................................................................................................... 19
3.3 15-keto-PGE2 attenuates the phosphorylation of IKKα/β and IkBα ..................... 20
3.4 15-keto-PGE2 modifies components of the NF-κB pathway ................................. 20
3.5 15-keto-PGE2 mediated anti-inflammatory responses in RAW264.7 cells via modification of RelA (p65) at Cysteine 120 ............................................................... 21
3.6 15-keto-PGE2 mediated anti-inflammatory responses in RAW264.7 cells via modification of NF-κB (p105/p50) at Cysteine 59 ..................................................... 22
3.7 15-keto-PGE2 promotes signal-induced degradation of NF-κB but not nuclear translocation ................................................................................................................. 23
4. Conclusion .................................................................................................................. 24
5. Discussion ................................................................................................................... 25
5.1 15-keto-PGE2 was once viewed as an inactive metabolite of PGE2 ...................... 25
5.2 The treatment with 15-keto-PGE2 increased ubiquitination in RAW264.7 cells .. 25
5.3 The modification by 15-keto-PGE2 on NF-κB (p105/p50) accelerates p105’s degradation ..................................................................................................................26
5.4 The modification of the C59 site of NF-κB (p105/p50) by 15-keto-PGE2 affects DNA binding activity of p50 ....................................................................................... 27
5.5 15-keto-PGE2 binds to the C120 site of RelA (p65) and potentially affects the functions of the Rel homology domain (RHD) of Rel A (p65) .................................. 28
Figures ............................................................................................................................ 29
Tables .............................................................................................................................. 46
References ....................................................................................................................... 47
List of Figures
1 15-keto-PGE2 reduces pro-inflammatory gene expression in LPS-stimulated RAW264.7 cells .......................................................................................................... 29
2 Treatment of 15-keto-PGE2 inhibits NF-κB promoter activity in LPS-stimulated RAW264.7 cells .......................................................................................................... 31
3 15-keto-PGE2 attenuates the phosphorylation of IKKα/β and IkBα ........................ 32
4 15-keto-PGE2 modifies components of the NF-κB pathway ................................... 33
5 15-keto-PGE2 mediated anti-inflammatory responses in RAW264.7 cells via modification of RelA (p65) at Cysteine 120 ............................................................... 36
6 15-keto-PGE2 mediated anti-inflammatory responses in RAW264.7 cells via modification of NF-κB (p105/p50) at Cysteine 59 ..................................................... 38
7 15-keto-PGE2 promotes signal-induced degradation of NF-κB but not nuclear translocation ................................................................................................................. 41
8 Schematic model of 15-keto-PGE2 regulates inflammation by modification of NF-κB ...................................................................................................................................... 44
dc.language.isoen
dc.subject轉譯後修zh_TW
dc.subject前列腺素zh_TW
dc.subject發炎反應zh_TW
dc.subjectinflammationen
dc.subjectProstaglandinen
dc.subject15-keto-PGE2en
dc.subjectanti-inflammatoryen
dc.subjectPTMen
dc.subjectpost-translational modificationen
dc.title前列腺素15-keto-PGE2經由轉譯後修飾NF-κB pathway調控發炎反應zh_TW
dc.title15-keto-PGE2 exhibited anti-inflammatory properties through post-translationally modifying the NF-κB pathwayen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張以承(Yi-Cheng Chang),徐立中(Li-Chung Hsu),蔡欣祐(Hsin-Yue Tsai)
dc.subject.keyword前列腺素,轉譯後修,發炎反應,zh_TW
dc.subject.keywordProstaglandin,15-keto-PGE2,inflammation,anti-inflammatory,PTM,post-translational modification,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201801102
dc.rights.note有償授權
dc.date.accepted2018-06-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved