Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69536
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorChia-Ying Linen
dc.contributor.author林佳瑩zh_TW
dc.date.accessioned2021-06-17T03:18:33Z-
dc.date.available2023-06-29
dc.date.copyright2018-06-29
dc.date.issued2018
dc.date.submitted2018-06-28
dc.identifier.citationAhmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1): 584-593.
Akpan, U. G., & Hameed, B. H. 2009. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater, 170(2-3): 520-529.
Anisuzzaman, S. M., Joseph, C. G., Krishnaiah, D., Bono, A., Suali, E., Abang, S., & Fai, L. M. 2016. Removal of chlorinated phenol from aqueous media by guava seed ( Psidium guajava ) tailored activated carbon. Water Resources and Industry, 16: 29-36.
Asadullah, M., Jahan, I., Ahmed, M. B., Adawiyah, P., Malek, N. H., & Rahman, M. S. 2014. Preparation of microporous activated carbon and its modification for arsenic removal from water. Journal of Industrial and Engineering Chemistry, 20(3): 887-896.
Batzias, F., Sidiras, D., Schroeder, E., & Weber, C. 2009. Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed systems. Chemical Engineering Journal, 148(2-3): 459-472.
Bedia, J., Belver, C., Ponce, S., Rodriguez, J., & Rodriguez, J. J. 2018. Adsorption of antipyrine by activated carbons from FeCl 3 -activation of Tara gum. Chemical Engineering Journal, 333: 58-65.
Belhamdi, B., Merzougui, Z., Trari, M., & Addoun, A. 2016. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). Journal of Applied Research and Technology, 14(5): 354-366.
Boonamnuayvitaya, V., Sae-ung, S., & Tanthapanichakoon, W. 2005. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation and Purification Technology, 42(2): 159-168.
Boudrahem, F., Aissani-Benissad, F., & Ait-Amar, H. 2009. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manage, 90(10): 3031-3039.
Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., & Almeida, V. C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1): 117-125.
Dai, Y., Zhang, D., & Zhang, K. 2016. Nitrobenzene-adsorption capacity of NaOH-modified spent coffee ground from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 68: 232-238.
Demir, H., Top, A., Balkose, D., & Ulku, S. 2008. Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater, 153(1-2): 389-394.
Fan, L., Zhou, Y., Yang, W., Chen, G., & Yang, F. 2008. Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments, 76(2): 440-446.
Ferrero, F. 2007. Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J Hazard Mater, 142(1-2): 144-152.
García-Montaño, J., Pérez-Estrada, L., Oller, I., Maldonado, M. I., Torrades, F., & Peral, J. 2008. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry, 195(2-3): 205-214.
Garg, V. 2004. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes and Pigments, 63(3): 243-250.
Gulnaz, O., Kaya, A., Matyar, F., & Arikan, B. 2004. Sorption of basic dyes from aqueous solution by activated sludge. J Hazard Mater, 108(3): 183-188.
Hadoun, H., Sadaoui, Z., Souami, N., Sahel, D., & Toumert, I. 2013. Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Applied Surface Science, 280: 1-7.
Hameed, B., & Daud, F. 2008. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal, 139(1): 48-55.
Hameed, B. H. 2009a. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J Hazard Mater, 162(2-3): 939-944.
Hameed, B. H. 2009b. Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. J Hazard Mater, 166(1): 233-238.
Hameed, B. H. 2009c. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J Hazard Mater, 162(1): 344-350.
Hameed, B. H. 2009d. Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater, 161(2-3): 753-759.
Hameed, B. H., & El-Khaiary, M. I. 2008. Removal of basic dye from aqueous medium using a novel agricultural waste material: pumpkin seed hull. J Hazard Mater, 155(3): 601-609.
Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. 2008a. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste. J Hazard Mater, 158(2-3): 499-506.
Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. 2008b. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1-3): 78-84.
Han, R., Zou, W., Yu, W., Cheng, S., Wang, Y., & Shi, J. 2007. Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves. J Hazard Mater, 141(1): 156-162.
Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas. 2003. Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101(1): 31-42.
Kante, K., Nieto-Delgado, C., Rangel-Mendez, J. R., & Bandosz, T. J. 2012. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J Hazard Mater, 201-202: 141-147.
Karadirek, Ş., & Okkay, H. 2018. Statistical modeling of activated carbon production from spent mushroom compost. Journal of Industrial and Engineering Chemistry.
Kim, J. 2017. Peatmoss Derived Biochar as an Effective Sorbent for Removing VOCs in Groundwaters, Proceedings of the International Conference of Recent Trends in Environmental Science and Engineering (RTESE'17).
Kumar, A., & Mohan Jena, H. 2015. High surface area microporous activated carbons prepared from Fox nut ( Euryale ferox ) shell by zinc chloride activation. Applied Surface Science, 356: 753-761.
Kwiatkowski, M. 2008. Application of fast multivariant identification technique of adsorption systems to analyze influence of production process conditions on obtained microporous structure parameters of carbonaceous adsorbents. Microporous and Mesoporous Materials, 115(3): 314-331.
Kwiatkowski, M., & Broniek, E. 2012. Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411: 105-110.
Kwiatkowski, M., & Broniek, E. 2017. An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529: 443-453.
Laksaci, H., Khelifi, A., Belhamdi, B., & Trari, M. 2017a. Valorization of coffee grounds into activated carbon using physic—chemical activation by KOH/CO 2. Journal of Environmental Chemical Engineering, 5(5): 5061-5066.
Laksaci, H., Khelifi, A., Trari, M., & Addoun, A. 2017b. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. Journal of Cleaner Production, 147: 254-262.
Lillo-Ródenas, M. A., Juan-Juan, J., Cazorla-Amorós, D., & Linares-Solano, A. 2004. About reactions occurring during chemical activation with hydroxides. Carbon, 42(7): 1371-1375.
Lin, J., Ye, W., Huang, J., Ricard, B., Baltaru, M.-C., Greydanus, B., Balta, S., Shen, J., Vlad, M., Sotto, A., Luis, P., & Van der Bruggen, B. 2015. Toward Resource Recovery from Textile Wastewater: Dye Extraction, Water and Base/Acid Regeneration Using a Hybrid NF-BMED Process. ACS Sustainable Chemistry & Engineering, 3(9): 1993-2001.
Lozano-Castelló, D., Calo, J. M., Cazorla-Amorós, D., & Linares-Solano, A. 2007. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 45(13): 2529-2536.
Miao, Q., Tang, Y., Xu, J., Liu, X., Xiao, L., & Chen, Q. 2013. Activated carbon prepared from soybean straw for phenol adsorption. Journal of the Taiwan Institute of Chemical Engineers, 44(3): 458-465.
Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., & Ranđelović, M. 2011. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276(1-3): 53-59.
Murthy, P. S., & Madhava Naidu, M. 2012. Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66: 45-58.
Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., & Hellal, A. 2005. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J Hazard Mater, 119(1-3): 189-194.
Niazi, L., Lashanizadegan, A., & Sharififard, H. 2018. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. Journal of Cleaner Production.
Novais, R. M., Ascensão, G., Tobaldi, D. M., Seabra, M. P., & Labrincha, J. A. 2018. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. Journal of Cleaner Production, 171: 783-794.
Oliveira, L. C., Pereira, E., Guimaraes, I. R., Vallone, A., Pereira, M., Mesquita, J. P., & Sapag, K. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J Hazard Mater, 165(1-3): 87-94.
Ozdemir, I., Şahin, M., Orhan, R., & Erdem, M. 2014. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125: 200-206.
Ozer, D., Dursun, G., & Ozer, A. 2007. Methylene blue adsorption from aqueous solution by dehydrated peanut hull. J Hazard Mater, 144(1-2): 171-179.
Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Marêché, J. F., & Furdin, G. 2004. NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon, 42(14): 2855-2866.
Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. 2010. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater, 177(1-3): 70-80.
Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M. B., Dubois, M., Batisse, N., & Duclaux, L. 2010. Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J Hazard Mater, 175(1-3): 779-788.
Santos, C., Fonseca, J., Aires, A., Coutinho, J., & Trindade, H. 2017. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag, 59: 37-47.
Simonin, J.-P. 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300: 254-263.
Sohrabi, M. R., & Ghavami, M. 2008. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. J Hazard Mater, 153(3): 1235-1239.
Song, S., Yao, J., He, Z., Qiu, J., & Chen, J. 2008. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation. J Hazard Mater, 152(1): 204-210.
Song, S., Ying, H., He, Z., & Chen, J. 2007. Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere, 66(9): 1782-1788.
Sudarjanto, G., Keller-Lehmann, B., & Keller, J. 2006. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology. J Hazard Mater, 138(1): 160-168.
Teh, C. M., & Mohamed, A. R. 2011. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds, 509(5): 1648-1660.
Vadivelan, V., & Kumar, K. V. 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci, 286(1): 90-100.
Valentine, M. T., Perlman, Z. E., Gardel, M. L., Shin, J. H., Matsudaira, P., Mitchison, T. J., & Weitz, D. A. 2004. Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys J, 86(6): 4004-4014.
Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. 2011. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2): 722-730.
Wang, J., & Kaskel, S. 2012. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45).
Wang, Y., Zuo, S., & Liu, Y. 2018. Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 263: 465-473.
Wu, J.-S., Liu, C.-H., Chu, K. H., & Suen, S.-Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of Membrane Science, 309(1-2): 239-245.
Xu, H., Wang, N., Zhang, X., Li, Z., & Deng, G. 2018. Monolithic NLO chromophores with different pendant groups and matrix-assisted-poling effect: Synthesis and chractorization. Dyes and Pigments, 157: 230-237.
Yang, J., Yu, M., & Chen, W. 2015. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21: 414-422.
Yu, Q., Zhang, R., Deng, S., Huang, J., & Yu, G. 2009. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res, 43(4): 1150-1158.
曾如玲,2006,玉米穗軸以KOH化學活化法製備高表面積活性碳及其應用。博士論文,國立臺灣大學環境工程學研究所。
黃于峯,2010,微波誘發裂解生質廢棄物之研究。博士論文,國立臺灣大學環境工程學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69536-
dc.description.abstract本研究回收再利用廢棄咖啡渣,經過碳化與KOH、NaOH兩種化學活化法製備活性碳,並探討其對亞甲基藍之吸附效率。實驗之浸漬比分別為0.5、1、2、3 ,以KOH活化法之活性碳各別命名為CGK0.5、CGK1、CGK2、CGK3,以NaOH活化法之活性碳各別命名為CGN0.5、CGN1、CGN2、CGN3。KOH與NaOH活化法在浸漬比為3時,分別獲得最高比表面積為2470 m2/g以及1968 m2/g。以BET表面積儀量測活性碳之比表面積、孔隙容積、孔徑分佈,再以SEM觀察外觀之變化,隨著浸漬比越高,活性碳之比表面積與孔體積也隨之增加。
透過界達電位分析,KOH與NaOH活化法製備之活性碳零點電位約為2。吸附反應中,不同pH值對於任何參數之影響是不大的,浸漬比才是此吸附反應重要之關鍵因素。
在吸附動力學中,NaOH活化法與KOH活化法之活性碳吸附特性皆是符合擬二階動力學模式,其中CGN3吸附速率是最快的,約在60分鐘內即把300 ppm之亞甲基藍完全吸附,效果明顯優於CGN0.5、CGN1、CGN2以及所有KOH活化法之活性碳。等溫平衡吸附模式中,KOH活化法與NaOH活化法之活性碳吸附特性皆是符合Langmuir等溫平衡吸附模式。當浸漬比為0.5與1時,KOH活化法之Qmax比起NaOH活化法具有較大之優勢,但效率並不佳。當浸漬比達到2與3時,KOH活化法與NaOH活化法之Qmax皆達到一定吸附容量水準,其中以CGK3與CGN3之效率最佳。
將廢棄的咖啡渣拿來碳化及活化進而製備成活性碳,其中CGK2、CGK3、CGN2、CGN3為良好之吸附劑,吸附效率佳,本研究落實資源回收再利用之精神,創造一個新的經濟價值,對於環境友善且不浪費資源。
zh_TW
dc.description.abstractIn this study, the coffee grounds were recycled and reused. The activated carbon was prepared through carbonization and KOH and NaOH chemical activation methods. The adsorption efficiency of methylene blue was investigated. For the impregnation ratios with 0.5, 1, 2, and 3, the activated carbons of the KOH activation method are named as CGK0.5, CGK1, CGK2, and CGK3, respectively. Similarly, the activated carbons by the NaOH activation method are named as CGN0.5, CGN1, CGN2, CGN3.The KOH and NaOH activation method achieved the highest specific surface area of 2470 m2/g and 1968 m2/g at the impregnation ratio of 3, respectively. The specific surface area, pore volume, and pore size distribution of the activated carbon were measured by the specific surface area analyzer, and the appearance was observed by SEM. As the impregnation ratio was higher, the specific surface area and pore volume of the activated carbon were increased.
The point of zero charge for activated carbon prepared by KOH or NaOH activation method is about 2. In the adsorption reaction, the influence of different pH values is not significant, and the impregnation ratio is an important key factor for this adsorption reaction.
In the adsorption kinetics, the activated carbon adsorption characteristics by both activation method were in accordance with the pseudo second-order model, in which the adsorption rate of CGN3 was the fastest, and 300 ppm of methylene blue was completely adsorbed within about 60 minutes. The adsorption efficiency is significantly better than those of CGN0.5, CGN1, CGN2 and all KOH activated carbons.
In the adsorption isothermal, KOH and NaOH activated carbons were in accordance with the Langmuir model. For the impregnation ratio with 0.5 and 1, KOH activated carbons had greater advantages than that of NaOH activated carbons, but the adsorption efficiency are not good enough. For the impregnation ratio reaches 2 and 3, the Qmax of the KOH and the NaOH activated carbons were promising, and the adsorption efficiency of CGK3 and CGN3 were the best.
The coffee grounds can be carbonized and activated to prepare activated carbon. Among all the adsorbents, CGK2, CGK3, CGN2, and CGN3 are better adsorbents because of the high specific surface area and the adsorption efficiency. This study implements the spirit of recycling and reuse of waste, which is friendly to the environment and reduces waste.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:18:33Z (GMT). No. of bitstreams: 1
ntu-107-R05541102-1.pdf: 5131158 bytes, checksum: c0bf12bec8d4d64a8f4ef79438420846 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 2
摘要 I
Abstract II
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究源起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 活性碳 5
2.2 咖啡 10
2.3 活性碳製備方法 12
2.4 活性碳物化特性分析 16
2.5 吸附動力模式 19
2.6 等溫吸附平衡模式 20
2.7 染料 22
第三章 實驗材料與方法 27
3.1 實驗設備與藥品 29
3.2 實驗材料與來源 30
3.3 活性碳製備 30
3.4 活性碳物化特性分析 32
3.5 吸附實驗 35
第四章 結果與討論 38
4.1 原料基本性質分析 38
4.2 KOH活化法之活性碳物化特性及吸附實驗 43
4.3 NaOH活化法之活性碳物化特性及吸附實驗 61
4.4 KOH活化法與NaOH活化法之比較 77
第五章 結論與建議 82
5.1 結論 82
5.2 建議 84
參考文獻 85
附錄 94
dc.language.isozh-TW
dc.subject化學活化法zh_TW
dc.subject活性碳zh_TW
dc.subject咖啡渣zh_TW
dc.subject吸附zh_TW
dc.subjectcoffee groundsen
dc.subjectactivated carbonen
dc.subjectchemical activation methoden
dc.subjectadsorptionen
dc.title以化學活化法製備咖啡渣活性碳及其應用研究zh_TW
dc.titlePreparation and Application of Activated Carbons from Coffee Grounds by Chemical Activation Methoden
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡景堯,林進榮
dc.subject.keyword咖啡渣,活性碳,化學活化法,吸附,zh_TW
dc.subject.keywordcoffee grounds,activated carbon,chemical activation method,adsorption,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201801009
dc.rights.note有償授權
dc.date.accepted2018-06-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved