請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張文亮(Wen-Lian Chang) | |
| dc.contributor.author | Yi-Hsuan Fan | en |
| dc.contributor.author | 范倚瑄 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:18:27Z | - |
| dc.date.available | 2018-07-03 | |
| dc.date.copyright | 2018-07-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-28 | |
| dc.identifier.citation | 中央研究院人社中心 GIS 專題中心,2016。[online] 臺灣百年歷史地圖。Retrieved from http://gissrv4.sinica.edu.tw/gis/twhgis/
李宜泓,2011。施工橋梁斷面模型風洞實驗。淡江大學土木工程學研究所,碩士論文。 林斯正、楊平世,2016。台灣蜻蛉目昆蟲。南投縣 : 農委會特有生物中心。 洪崑煌、王明光、陳尊賢、賴朝明、何聖賓和李達源,1996。土壤化學。台北市 : 國立編譯館。 黃俊選、林斯正、陳瑞禮、劉月梅、謝祥彥 (2018年1月)。四斑細蟌在磺港溪口之生活史與族群變動。「動物行為暨生態研討會」發表之論文,國立清華大學。 張永仁和汪良仲,1998。陽明山家公園解說叢書 蜻蛉篇。台北市 : 內政部營建署陽明山國家公園管理處。 郭魁士,1999。土壤學。臺北市:之宜出版社 陳怡君,2012。五股濕地中四斑細蟌棲地之水文環境特性。國立臺灣大學環境系統工程學研究所,碩士論文。 楊平世、吳文哲和洪淑彬.,1996。台灣野生動物資源調查~昆蟲資源調查手冊。台北市 : 行政院農業委員會。 詹見平,2007。和蜻蜓做朋友。新北市 : 人人出版股份有限公司。 廖少威、賴文亮、陳振正、邱俊彥,2008。大鵬灣底質特性空間變異暨與鄰近河川底質特性之分類研究。農業工程學報,第54卷,第2期。 臺北市政府工務局水利工程處,2016。國家重要濕地保育行動計畫 。內政部營建署。臺北市政府工務局水利工程處。 Adams, J. B., and Bate, G. C. (1999). Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation. Aquatic Botany, 64(3–4), 359–367. doi:10.1016/S0304-3770(99)00063-7 Al-Shami, S. A. et al. (2014). Developmental instability in Odonata larvae in relation to water quality of Serdang River, Kedah, Malaysia. Life Science Journal, 11(7), 152–159. doi:10.1111/j.1574-6941.2012.01443.x Bai, J., Ouyang, H., Deng, W., Zhu, Y., Zhang, X., &Wang, Q. (2005). Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1–2), 181–192. doi:10.1016/j.geoderma.2004.04.012 Brix, H. (1994). Functions of macrophytes in constructezd wetlands. Wat. Sci. Tech., 29(4), 71–78. Cannings, RA. and Cannings, S. (1987). The Odonata of some saline lakes in British Columbia, Canada: ecological distribution and zoogeography. Advances in Odonatology, 3(1), 7–21. Carvalho, F. G.de, Pinto, N. S., Oliveira Júnior, J. M. B.de, and Juen, L. (2013). Effects of marginal vegetation removal on Odonata communities. Acta Limnologica Brasiliensia, 25(1), 10–18. doi:10.1590/S2179-975X2013005000013 Corbet, P. S. (1980). Annual Review of Entomology, Biology of Odonata.25(1), 189–217. doi:10.1146/annurev.en.25.010180.001201 Corbet, P. S. (2004). Dragonflies: Behavior and Ecology of Odonata (Rev. ed). Colchester, Essex, UK: Harley Books. Corbet, P. S., and May, M. L. (2008). Fliers and perchers among Odonata: Dichotomy or multidimensional continuum? A provisional reappraisal. International Journal of Odonatology, 11(2), 155–171. doi:10.1080/13887890.2008.9748320 Daly, H.V., Doyen, J. T., and Ehrlich, P. R. (1978). Introduction to Insect Biology and Diversity. New York: McGraw-Hill. Dover, J. W., Sparks, T. H., and Greatorex-Davies, J. N. (1997). The importance of shelter for butterflies in open landscapes. Journal of Insect Conservation, 1(2), 89–97. doi:/10.1023/A:1018487127174 Engloner, A. I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. Flora: Morphology, Distribution, Functional Ecology of Plants, 204(5), 331–346. doi:10.1016/j.flora.2008.05.001 Fornara, D. A., and Tilman, D. (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96(2), 314–322. doi:10.1111/j.1365-2745.2007.01345.x Grimaldi, D., and Engel, M. S. (2005). Evolution of the Insects. Cambridge University press, New York. Guillermo-Ferreira, R., and Del-Claro, K. (2011). Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. International Journal of Odonatology, 14(3), 275–279. doi:10.1080/13887890.2011.621109 Hanganu, J., Mihail, G., and Coops, H. (1999). Responses of ecotypes of Phragmites australis to increased seawater influence: A field study in the Danube Delta, Romania. Aquatic Botany, 64(3–4), 351–358. doi:10.1016/S0304-3770(99)00062-5 Hellings, S. E., and Gallagher, J. L. (1992). The Effects of Salinity and Flooding on Phragmites australis Journal of Applied Ecology, 29(1), 41–49. Henry, E. R., Rivera, J. A., Linkem, C. N., Scales, J. A., and Butler, M. A. (2018). Damselflies that prefer dark habitats illustrate the importance of light as an ecological resource. Biological Journal of the Linnean Society, 123(1), 144–154. doi:10.1093/biolinnean/blx122 Hudson, J., and Berrill, M. (1986). Tolerance of low pH exposure by the eggs of Odonata (dragonflies and damselflies). Hydrobiologia, 140(1), doi:10.1007/BF00006725 Hughes, A. R. et al. (2016). Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biological Invasions, 18(9), 2577–2595. doi:10.1007/s10530-016-1143-0 Iwata, S., and Watanabe, M. (2004). Saline Tolerance of Young Zygopteran Larvae Inhabiting the Emergent in Plants Community Establish Estuaries, 7(4), 133–141. Iwata, S., and Watanabe, M. (2009). Spatial distribution and species composition of larval odonata in the artificial reed community established as a habitat for Mortonagrion hirosei Asahina(Zygoptera: Coenagrionidae), 38(4), 307–319. Jones, C. A. (1983). Effect of Soil Texture on Critical Bulk Densities for Root Growth1. Soil Science Society of America Journal, 47(6), 1208. doi:10.2136/sssaj1983.03615995004700060029x Kirkton, S. D., and Schultz, T. D. (2001). Age-Specific behavior and habitat selection of adult male damselflies, Calopteryx maculata (Odonata:Calopterygidae), 14(4), 545–556. Knight, T. M., et al. (2005). Trophic cascades across ecosystems. Nature, 437(7060), 880–883. doi:10.1038/nature03962 Konisky, R. a., and Burdick, D. M. (2004). Effects of stressors on invasive and halophytic plants of New England salt marshes: A framework for predicting response to tidal restoration. Wetlands, 24(2), 434–447. doi:10.1672/0277-5212(2004)024[0434:EOSOIA]2.0.CO;2 Lissner, J., and Schierup, H.-H. (1997). Effects of salinity on the growth of Phragmites australis. Aquatic Botany, 55(4), 247–260. doi:10.1016/S0304-3770(96)01085-6 Loiola, G. R., and DeMarco, P. (2011). Behavioral ecology of Heteragrion consors Hagen (Odonata, Megapodagrionidae): a shade-seek Atlantic forest damselfly. Revista Brasileira de Entomologia, 55(3), 373–380. doi:10.1590/S0085-56262011005000036 Mabry, C., and Dettman, C. (2010). Odonata richness and abundance in relation to vegetation structure in restored and native wetlands of the prairie pothole region, USA. Ecological Restoration, 28(4), 475–484. doi:10.3368/er.28.4.475 May, M. L. (1978). Thermal adaptations of dragonflies. Odonatologica, 7(1), 27–47. doi:10.1098/rspb.2000.1098 Mitsch, W. J., and Mander, Ü. (2018). Wetlands and carbon revisited. Ecological Engineering, 114(January), 1–6. doi:10.1016/j.ecoleng.2017.12.027 Miyashita, M. (1999). Studies on conservation and restoration of the habitat of the damselfli, Mortonagrion hirosei. Environmental systems research, 27, 293–304. Pasek, J. E. (1988). Influence of wind and windbreaks on local dispersal of insects. Agriculture, Ecosystems and Environment, 22–23(C), 539–554. doi:10.1016/0167-8809(88)90044-8 Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. Biological Conservation, 12(2), 115–134. doi:10.1016/0006-3207(77)90065-9 Pulliam, H. . R., and Danielson, B. J. . (1991). Sources , Sinks , and Habitat Selection : A Landscape Perspective on Population Dynamics. The American Naturalist, 137, 550–566. Rebora, M., Piersanti, S., Salerno, G., Conti, E., &Gaino, E. (2007). Water deprivation tolerance and humidity response in a larval dragonfly: A possible adaptation for survival in drying ponds. Physiological Entomology, 32(2), 121–126. doi:10.1111/j.1365-3032.2006.00553.x Remsburg, A. J., Olson, A. C., and Samways, M. J. (2008). Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. Journal of Insect Behavior, 21(6), 460–468. Remsburg, A. J., and Turner, M. G. (2009). Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. Journal of the North American Benthological Society, 28(1), 44–56. doi:10.1899/08-004.1 Ruehlmann, J., and Körschens, M. (2009). Calculating the Effect of Soil Organic Matter Concentration on Soil Bulk Density. Soil Science Society of America Journal, 73(3), 876. doi:10.2136/sssaj2007.0149 Rychła, A., Benndorf, J., and Buczyński, P. (2011). Impact of pH and conductivity on species richness and community structure of dragonflies (Odonata) in small mining lakes. Fundamental and Applied Limnology /Archiv Für Hydrobiologie, 179(1), 41–50. doi:10.1127/1863-9135/2011/0179-0041 Saltonstall, K., and Court Stevenson, J. (2007). The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquatic Botany, 86(4), 331–336. doi:10.1016/j.aquabot.2006.12.003 Samways, M. J., McGeoch, M. A., and New, T. R. (2010). Insect Conservation: A Handbook of Approaches and Methods. UK: Oxford University Press. Samways, M. J., and Sharratt, N. J. (2018). Recovery of Endemic Dragonflies after Removal of Invasive Alien Trees. Society for Conservation Biology, 24(1), 267–277. Schilling, E. G., Loftin, C. S., and Huryn, A. D. (2009). Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshwater Biology, 54(1), 181–202. doi:10.1111/j.1365-2427.2008.02096.x Schorr, M., and Paulson, D. (2018). World Odonata List. Retrieved from www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2 Stanton, D. J., and Allcock, J. A. (2011). Habitat characteristics and odonate communities at selected sites used by Mortonagrion hirosei Asahina (Zygoptera : Coenagrionidae) in Hong Kong. Journal of Threatened Taxa, 3(12), 2242–2252. Szewczyk, J., and Szwagrzyk, J. (2010). Spatial and temporal variability of natural regeneration in a temperate old-growth forest. Annals of Forest Science, 67(2), 202p1-202p8. doi:10.1051/forest/2009095 Tollett, V. D., Benvenutti, E. L., Deer, L. A., and Rice, T. M. (2009). Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Archives of Environmental Contamination and Toxicology, 56(1), 77–84. doi:10.1007/s00244-008-9170-1 Tylová, E., Steinbachová, L., Soukup, A., Gloser, V., & Votrubová, O. (2013). Pore water N:P and NH4+:NO3-alter the response of Phragmites australis and Glyceria maxima to extreme nutrient regimes. Hydrobiologia, 700(1), 141–155. doi:10.1007/s10750-012-1225-7 Uddin, M. N., and Robinson, R. W. (2018). Can nutrient enrichment influence the invasion of Phragmites australis? Science of the Total Environment, 613–614, 1449–1459. doi:10.1016/j.scitotenv.2017.06.131 VanBuskirk, J. (1986). Establishment and organization of territories in the dragonfly Sympetrum rubicundulum (Odonata: Libellulidae). Animal Behaviour, 34(6), 1781–1790. doi:10.1016/S0003-3472(86)80264-0 Wang, Q., et al.. (2006). Effects of growing conditions on the growth of and interactions between salt marsh plants: Implications for invasibility of habitats. Biological Invasions, 8(7), 1547–1560. Watanabe, M., and Mimura, Y. (2003). Population dynamics of Mortonagrion hirosei (Odonata: Coenagrionidae). International Journal of Odonatology, 6(1), 65–78. doi:10.1080/13887890.2003.10510451 Watanabe, M., and Mimura, Y. (2004). Diurnal changes in perching sites and low mobility of adult Mortonagrion hirosei Asahina inhabiting understory of dense reed community (Zygoptera: Coenagrionidae). Odonatologica, 33(3), 303–313. Worthen, W. B., and Jones, C. M. (2006). Relationships between body size,wing morphology, and perch height selection in a guild of Libellulidae species (Odonata). International Journal of Odonatology, 9(2), 235. Wilson, K.D.P. and Reels, G. 2011. Mortonagrion hirosei. The IUCN Red List of Threatened Species 2011: e.T13891A4362234. Xie, X., Yamaguchi, H., and Ito, M. (1996). Static behaviors of long-span cable-stayed bridge. Doboku Gakkai Ronbunshu, 1996(537), 205-215. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69533 | - |
| dc.description.abstract | 屬於近危物種的豆娘 ― 四斑細蟌 (Mortonagrion hirosei) 於台灣僅於淡水河系下游三處濕地被發現,台北市磺港溪口為其中之一。然而,此處以往已歷經橋樑建設等大型工程開發,因此,環境破壞與四斑細蟌生存的關係成為需要被關注的課題。本研究由水質、土壤、植物及微氣候因子之分析,探討四斑細蟌與環境的關係,以利未來保育及棲地維護工作之落實。成蟲調查結果顯示,在此人為開發導致44.8 % 植被面積減少的樣區中,四斑細蟌的分布較為侷限。分析整體樣區風速分布,發現橋梁構造對棲地風速造成影響、植被具有降低風速的效果,此兩項地景對四斑細蟌之分布具影響力。水質調查中,發現此樣區有強酸性水質之磺港溪流經,其pH < 3,可能對四斑細蟌造成威脅。在環境因子偏好的研究中,
發現四斑細蟌在具蘆葦(Phragmites australis)密度差異的棲地中呈叢聚分布 (aggregated),偏好蘆葦密度介於200 枝/m2–500 枝/m2,而蘆葦密度對溫度及照度造成差異,可能為影響其挑選蘆葦密度的原因。最後討論棲地維護的方向,由重要的環境因子 ― 蘆葦密度為目標,分析其與土壤的關係,結果顯示本樣區中土壤變異主要來自土壤有機質,且有機質與蘆葦密度呈顯著正相關。整體而言,本研究建議工程建設應將蘆葦破壞導致的棲地縮減及碎裂化納入考量,維護適當密度的蘆葦,並由土壤有機質的保存,進行四斑細蟌棲地的經營與維護。 | zh_TW |
| dc.description.abstract | Mortonagrion hirosei is a damselfly species which has been categorized as “near
threatened” in IUCN red list. In Taiwan, it has only been found in three wetlands along the downstream of Tamsui River, and Huang Gang Creek estuary is one of them. However, recently this habitat has experienced large-scale bridge construction; the living condition of M.hirosei under human disturbance, therefore, requires special concerns. This study analyzes the correlation between M.hirosei’s density and environmental factors including water, soil, plants, and microclimate. A decrease of 44.8% vegetation coverage is found, restricting the distribution of M.hirosei. A major factor is the increase of wind speed, which used to be lowered by plantation, these two landscape elements turned out to be crucial for maintaining its habitat. An extremely acid water quality (pH < 3) is found as an asset of this estuary. Particularly, reeds with a density of 200 to 500 branches/m2 are found most favorable. Temperature and light intensity are observed as important environment factor of reed density. Soil organic matters dominate the soil heterogeneity, which also presents a significantly positive correlation with reed density. Finally, this study suggests that human should consider the cause of habitat loss and fragmentation by reed destroyed in estuary development, and emphasis on preserve soil organic matters to maintain proper reed density. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:18:27Z (GMT). No. of bitstreams: 1 ntu-107-R05622018-1.pdf: 1658512 bytes, checksum: da54563e0b1246dc8783781207656657 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 蜻蛉目 2 1.2.2 蜻蛉目與棲地環境之關係 3 1.2.3 四斑細蟌 7 1.2.4 四斑細蟌與棲地環境之關係 8 1.2.5 四斑細蟌復育案例 10 1.3 研究動機 12 1.4 研究目的 12 第二章 理論與模式 13 2.1 因素分析 13 2.2 Variance-to-Mean Ratio 16 第三章 材料與方法 18 3.1 樣區背景 18 3.1.1 四斑細蟌之發現 18 3.1.2 地理環境 19 3.1.3 人為建設 20 3.1.4 氣候背景 22 3.2 樣區調查 25 3.2.1 四斑細蟌調查 29 3.2.2 植物密度量測 29 3.2.3 土壤採樣及分析 30 3.2.4 微氣候量測 31 3.2.5 水質採樣及分析 32 第四章 結果與討論 34 4.1 磺港溪口棲地環境特性 34 4.1.1 四斑細蟌於整體樣區之分布 34 4.1.2 風速分布 36 4.1.3 水質特性 39 4.1.4 土壤特性 43 4.2 四斑細蟌與棲地環境之關係 45 4.2.1 四斑細蟌於微棲地的空間分布 45 4.2.2 四斑細蟌與蘆葦密度的關係 46 4.2.3 四斑細蟌與微氣候的關係 49 4.3 四斑細蟌的棲地維護 55 4.3.1 土壤與蘆葦密度的關係 55 4.3.2 人為建設對棲地之影響 64 第五章 結論與建議 65 5.1 結論 65 5.2 建議 66 參考文獻 67 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 半鹹水濕地 | zh_TW |
| dc.subject | 四斑細蟌 | zh_TW |
| dc.subject | 磺港溪 | zh_TW |
| dc.subject | 蘆葦 | zh_TW |
| dc.subject | 環境因子 | zh_TW |
| dc.subject | Huang Gang Creek | en |
| dc.subject | environmental factors | en |
| dc.subject | tidal freshwater wetlands | en |
| dc.subject | reed (Phragmites australis) | en |
| dc.subject | Mortonagrion hirosei. | en |
| dc.title | 磺港溪口植物及土壤對四斑細蟌的影響 | zh_TW |
| dc.title | Evaluating How Soil and Plants Affect the Damselfly Mortonagrion hirosei in Huang Gang Creek in Taipei | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 尤少彬(Shao-Pin Yo),張俊哲(Chun-che Chang) | |
| dc.subject.keyword | 四斑細蟌,磺港溪,半鹹水濕地,蘆葦,環境因子, | zh_TW |
| dc.subject.keyword | Mortonagrion hirosei.,reed (Phragmites australis),tidal freshwater wetlands,environmental factors,Huang Gang Creek, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201801184 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-06-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
