Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹東榮(Tong-Rong Jan)
dc.contributor.authorYai-Ping Hsiaoen
dc.contributor.author蕭雅萍zh_TW
dc.date.accessioned2021-06-17T03:17:38Z-
dc.date.available2020-08-18
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAhamed, M., Alhadlaq, H. A., Alam, J., Khan, M. A., Ali, D., Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des, 19(37), 6681-6690. doi:10.2174/1381612811319370011
Axtell, R. C., de Jong, B. A., Boniface, K., van der Voort, L. F., Bhat, R., De Sarno, P., . . . Raman, C. (2010). T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med, 16(4), 406-412. doi:10.1038/nm.2110
Aydn, A., Sipahi, H., Charehsaz, M. (2012). Nanoparticles Toxicity and Their Routes of Exposures. In Recent Advances in Novel Drug Carrier Systems.
Baxter, A. G. (2007). The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol, 7(11), 904-912. doi:10.1038/nri2190
Benveniste, E. N. (1997). Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med, 75, 165-173.
Blank, F., Gerber, P., Rothen-Rutishauser, B., Sakulkhu, U., Salaklang, J., De Peyer, K., . . . Von Garnier, C. (2011). Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology, 5(4), 606-621. doi:10.3109/17435390.2010.541293
Carlander, U., Li, D., Jolliet, O., Emond, C., Johanson, G. (2016). Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int J Nanomedicine, 11, 625-640. doi:10.2147/IJN.S94370
Caster, J. M., Yu, S. K., Patel, A. N., Newman, N. J., Lee, Z. J., Warner, S. B., . . . Wang, A. Z. (2017). Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomedicine, 13(5), 1673-1683. doi:10.1016/j.nano.2017.03.002
Cetin, A., Deveci, E. (2019). Expression of VEGF and GFAP in a rat model of traumatic brain injury treated with Honokiol: a biochemical and immunohistochemical study. Folia Morphol (Warsz). doi:10.5603/FM.a2019.0029
Chao, L. K., Liao, P. C., Ho, C. L., Wang, E. I., Chuang, C. C., Chiu, H. W., . . . Hua, K. F. (2010). Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem, 58(6), 3472-3478. doi:10.1021/jf904207m
Chatterjee, D., Biswas, K., Nag, S., Ramachandra, S. G., Das Sarma, J. (2013). Microglia play a major role in direct viral-induced demyelination. Clin Dev Immunol, 2013, 510396. doi:10.1155/2013/510396
Chen, H. H., Chang, P. C., Chen, C., Chan, M. H. (2018). Protective and therapeutic activity of honokiol in reversing motor deficits and neuronal degeneration in the mouse model of Parkinson's disease. Pharmacol Rep, 70(4), 668-676. doi:10.1016/j.pharep.2018.01.003
Chen, H. H., Chang, P. C., Wey, S. P., Chen, P. M., Chen, C., Chan, M. H. (2018). Therapeutic effects of honokiol on motor impairment in hemiparkinsonian mice are associated with reversing neurodegeneration and targeting PPARgamma regulation. Biomed Pharmacother, 108, 254-262. doi:10.1016/j.biopha.2018.07.095
Chu, F., Shi, M., Zheng, C., Shen, D., Zhu, J., Zheng, X., Cui, L. (2018). The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol, 318, 1-7. doi:10.1016/j.jneuroim.2018.02.015
Chuang, D. Y., Chan, M. H., Zong, Y., Sheng, W., He, Y., Jiang, J. H., . . . Sun, G. Y. (2013). Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation, 10, 15. doi:10.1186/1742-2094-10-15
Constantinescu, C. S., Farooqi, N., O'Brien, K., Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol, 164(4), 1079-1106. doi:10.1111/j.1476-5381.2011.01302.x
Costa, A., Facchini, G., Pinheiro, A., da Silva, M. S., Bonner, M. Y., Arbiser, J., Eberlin, S. (2017). Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int J Dermatol, 56(7), 754-761. doi:10.1111/ijd.13569
Couto, D., Freitas, M., Costa, V. M., Chiste, R. C., Almeida, A., Lopez-Quintela, M. A., . . . Fernandes, E. (2016). Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. J Appl Toxicol, 36(10), 1321-1331. doi:10.1002/jat.3323
Dhakshinamoorthy, V., Manickam, V., Perumal, E. (2017). Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice. Neurotox Res, 32(2), 187-203. doi:10.1007/s12640-017-9721-1
Dinda, S. C., Pattnaik, G. (2013). Nanobiotechnology-based drug delivery in brain targeting. Curr Pharm Biotechnol, 14(15), 1264-1274. doi:10.2174/1389201015666140608143719
Dreno, B., Alexis, A., Chuberre, B., Marinovich, M. (2019). Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol, 33 Suppl 7, 34-46. doi:10.1111/jdv.15943
Elfeky, M. G., Mantawy, E. M., Gad, A. M., Fawzy, H. M., El-Demerdash, E. (2020). Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-beta/SMAD/MAPK signaling pathways. Life Sci, 240, 117096. doi:10.1016/j.lfs.2019.117096
Escamilla-Rivera, V., Uribe-Ramirez, M., Gonzalez-Pozos, S., Lozano, O., Lucas, S., De Vizcaya-Ruiz, A. (2016). Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett, 240(1), 172-184. doi:10.1016/j.toxlet.2015.10.018
Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N., Mills, K. H. (2010). T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol, 162(1), 1-11. doi:10.1111/j.1365-2249.2010.04143.x
Gaharwar, U. S., Meena, R., Rajamani, P. (2017). Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol, 37(10), 1232-1244. doi:10.1002/jat.3485
Galvao, J., Davis, B., Tilley, M., Normando, E., Duchen, M. R., Cordeiro, M. F. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J, 28(3), 1317-1330. doi:10.1096/fj.13-235440
Gauberti, M., Fournier, A. P., Docagne, F., Vivien, D., Martinez de Lizarrondo, S. (2018). Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System. Theranostics, 8(5), 1195-1212. doi:10.7150/thno.22662
Grifka-Walk, H. M., Giles, D. A., Segal, B. M. (2015). IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Eur J Immunol, 45(10), 2780-2786. doi:10.1002/eji.201545800
Gupta, A. K., Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995-4021. doi:10.1016/j.biomaterials.2004.10.012
Heppner, F. L., Greter, M., Marino, D., Falsig, J., Raivich, G., Hovelmeyer, N., . . . Aguzzi, A. (2005). Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med, 11(2), 146-152. doi:10.1038/nm1177
Herringson, T. P., Altin, J. G. (2011). Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm, 411(1-2), 206-214. doi:10.1016/j.ijpharm.2011.03.044
Hsiao, Y. P., Chen, H. T., Liang, Y. C., Wang, T. E., Huang, K. H., Hsu, C. C., . . . Jan, T. R. (2020). Development of Nanosome-Encapsulated Honokiol for Intravenous Therapy Against Experimental Autoimmune Encephalomyelitis. Int J Nanomedicine, 15, 17-29. doi:10.2147/IJN.S214349
Hsiao, Y. P., Huang, C. H., Lin, Y. C., Jan, T. R. (2019). Systemic exposure to a single dose of ferucarbotran aggravates neuroinflammation in a murine model of experimental autoimmune encephalomyelitis. Int J Nanomedicine, 14, 1229-1240. doi:10.2147/IJN.S189327
Hu, J., Chen, L. J., Liu, L., Chen, X., Chen, P. L., Yang, G., . . . Wei, Y. Q. (2008). Liposomal honokiol, a potent anti-angiogenesis agent, in combination with radiotherapy produces a synergistic antitumor efficacy without increasing toxicity. Exp Mol Med, 40(6), 617-628. doi:10.3858/emm.2008.40.6.617
Imam, S. Z., Lantz-McPeak, S. M., Cuevas, E., Rosas-Hernandez, H., Liachenko, S., Zhang, Y., . . . Binienda, Z. K. (2015). Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol Neurobiol, 52(2), 913-926. doi:10.1007/s12035-015-9259-2
Ishikawa, C., Arbiser, J. L., Mori, N. (2012). Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia. Biochim Biophys Acta, 1820(7), 879-887. doi:10.1016/j.bbagen.2012.03.009
Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond), 10(6), 993-1018. doi:10.2217/nnm.14.203
Jiraviriyakul, A., Songjang, W., Kaewthet, P., Tanawatkitichai, P., Bayan, P., Pongcharoen, S. (2019). Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol, 25(29), 3941-3955. doi:10.3748/wjg.v25.i29.3941
Khalid, S., Ullah, M. Z., Khan, A. U., Afridi, R., Rasheed, H., Khan, A., . . . Khan, S. (2018). Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-kappaB and Nrf2 Signaling. Front Pharmacol, 9, 140. doi:10.3389/fphar.2018.00140
Kim, B. H., Cho, J. Y. (2008). Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol Sin, 29(1), 113-122. doi:10.1111/j.1745-7254.2008.00725.x
Kim, K. R., Park, K.-K., Chun, K.-S., Chung, W.-Y. (2010). Honokiol Inhibits the Progression of Collagen-Induced Arthritis by Reducing Levels of Pro-inflammatory Cytokines and Matrix Metalloproteinases and Blocking Oxidative Tissue Damage. Journal of Pharmacological Sciences, 114(1), 69-78. doi:10.1254/jphs.10070FP
Kirschbaum, K., Sonner, J. K., Zeller, M. W., Deumelandt, K., Bode, J., Sharma, R., . . . Breckwoldt, M. O. (2016). In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A, 113(46), 13227-13232. doi:10.1073/pnas.1609397113
Klingensmith, N. J., Chen, C. W., Liang, Z., Burd, E. M., Farris, A. B., Arbiser, J. L., . . . Coopersmith, C. M. (2018). Honokiol Increases CD4+ T Cell Activation and Decreases TNF but Fails to Improve Survival Following Sepsis. Shock, 50(2), 178-186. doi:10.1097/SHK.0000000000001021
Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V., Segal, B. M. (2008). IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med, 205(7), 1535-1541. doi:10.1084/jem.20080159
Lassmann, H., Bradl, M. (2017). Multiple sclerosis: experimental models and reality. Acta Neuropathol, 133(2), 223-244. doi:10.1007/s00401-016-1631-4
Legroux, L., Arbour, N. (2015). Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol, 10(4), 528-546. doi:10.1007/s11481-015-9614-0
Li, C. Y., Chao, L. K., Wang, S. C., Chang, H. Z., Tsai, M. L., Fang, S. H., . . . Hsu, I. C. (2011). Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol, 226(9), 2338-2349. doi:10.1002/jcp.22576
Lin, M. C., Lee, Y. W., Tseng, Y. Y., Lin, Y. W., Chen, J. T., Liu, S. H., Chen, R. M. (2019). Honokiol Induces Autophagic Apoptosis in Neuroblastoma Cells through a P53-Dependent Pathway. Am J Chin Med, 47(4), 895-912. doi:10.1142/S0192415X19500472
Liu, H. T., Wang, T. E., Hsu, Y. T., Chou, C. C., Huang, K. H., Hsu, C. C., . . . Tsai, P. S. (2019). Nanoparticulated Honokiol Mitigates Cisplatin-Induced Chronic Kidney Injury by Maintaining Mitochondria Antioxidant Capacity and Reducing Caspase 3-Associated Cellular Apoptosis. Antioxidants (Basel), 8(10). doi:10.3390/antiox8100466
Liu, J., Zhang, C., Liu, Z., Zhang, J., Xiang, Z., Sun, T. (2015). Honokiol downregulates Kruppel-like factor 4 expression, attenuates inflammation, and reduces histopathology after spinal cord injury in rats. Spine (Phila Pa 1976), 40(6), 363-368. doi:10.1097/BRS.0000000000000758
Liu, S., Zhang, S. M., Ju, R. J., Xiao, Y., Wang, X., Song, X. L., . . . Chen, G. R. (2017). Antitumor efficacy of Lf modified daunorubicin plus honokiol liposomes in treatment of brain glioma. Eur J Pharm Sci, 106, 185-197. doi:10.1016/j.ejps.2017.06.002
Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X., . . . Wu, Y. (2017). The role of microglia in multiple sclerosis. Neuropsychiatr Dis Treat, 13, 1661-1667. doi:10.2147/NDT.S140634
Luther, E. M., Petters, C., Bulcke, F., Kaltz, A., Thiel, K., Bickmeyer, U., Dringen, R. (2013). Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater, 9(9), 8454-8465. doi:10.1016/j.actbio.2013.05.022
Lyons, J. A., Ramsbottom, M. J., Cross, A. H. (2002). Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol, 32(7), 1905-1913. doi:10.1002/1521-4141(200207)32:7<1905::AID-IMMU1905>3.0.CO;2-L
Mihara, T., Mikawa, S., Kaji, N., Endo, M., Oikawa, T., Tong-Rong, J., . . . Hori, M. (2017). Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression. Inflammation, 40(4), 1331-1341. doi:10.1007/s10753-017-0576-7
Munroe, M. E., Businga, T. R., Kline, J. N., Bishop, G. A. (2010). Anti-inflammatory effects of the neurotransmitter agonist Honokiol in a mouse model of allergic asthma. J Immunol, 185(9), 5586-5597. doi:10.4049/jimmunol.1000630
Murakami, Y., Kawata, A., Seki, Y., Koh, T., Yuhara, K., Maruyama, T., . . . Fujisawa, S. (2012). Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis. In Vivo, 26(6), 941-950.
Murphy, A. C., Lalor, S. J., Lynch, M. A., Mills, K. H. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun, 24(4), 641-651. doi:10.1016/j.bbi.2010.01.014
Oufensou, S., Scherm, B., Pani, G., Balmas, V., Fabbri, D., Dettori, M. A., . . . Delogu, G. (2019). Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLoS One, 14(9), e0221249. doi:10.1371/journal.pone.0221249
Park, E. J., Kim, S. W., Yoon, C., Kim, Y., Kim, J. S. (2016). Disturbance of ion environment and immune regulation following biodistribution of magnetic iron oxide nanoparticles injected intravenously. Toxicol Lett, 243, 67-77. doi:10.1016/j.toxlet.2015.11.030
Park, E. J., Oh, S. Y., Kim, Y., Yoon, C., Lee, B. S., Kim, S. D., Kim, J. S. (2016). Distribution and immunotoxicity by intravenous injection of iron nanoparticles in a murine model. J Appl Toxicol, 36(3), 414-423. doi:10.1002/jat.3232
Park, E. J., Oh, S. Y., Lee, S. J., Lee, K., Kim, Y., Lee, B. S., Kim, J. S. (2015). Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environ Res, 143(Pt A), 138-147. doi:10.1016/j.envres.2015.09.030
Park, E. J., Umh, H. N., Choi, D. H., Cho, M. H., Choi, W., Kim, S. W., . . . Kim, J. H. (2014). Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells. Arch Toxicol, 88(8), 1607-1618. doi:10.1007/s00204-014-1210-1
Patil, Y. P., Jadhav, S. (2014). Novel methods for liposome preparation. Chem Phys Lipids, 177, 8-18. doi:10.1016/j.chemphyslip.2013.10.011
Petters, C., Irrsack, E., Koch, M., Dringen, R. (2014). Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res, 39(9), 1648-1660. doi:10.1007/s11064-014-1380-5
Petters, C., Thiel, K., Dringen, R. (2016). Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology, 10(3), 332-342. doi:10.3109/17435390.2015.1071445
Prasad, R., Singh, T., Katiyar, S. K. (2017). Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin. Sci Rep, 7(1), 1657. doi:10.1038/s41598-017-01774-5
Racosta, J. M., Kimpinski, K. (2015). Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res. doi:10.1007/s10286-015-0325-7
Rajgopal, A., Missler, S. R., Scholten, J. D. (2016). Magnolia officinalis (Hou Po) bark extract stimulates the Nrf2-pathway in hepatocytes and protects against oxidative stress. J Ethnopharmacol, 193, 657-662. doi:10.1016/j.jep.2016.10.016
Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., . . . Chandrasekaran, N. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol, 35(2), 170-183. doi:10.1177/0960327115579208
Reimer, P., Balzer, T. (2003). Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol, 13(6), 1266-1276. doi:10.1007/s00330-002-1721-7
Rickert, U., Cossais, F., Heimke, M., Arnold, P., Preusse-Prange, A., Wilms, H., Lucius, R. (2018). Anti-inflammatory properties of Honokiol in activated primary microglia and astrocytes. J Neuroimmunol, 323, 78-86. doi:10.1016/j.jneuroim.2018.07.013
Riley, R. S., Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 9(4). doi:10.1002/wnan.1449
Sadeghi, L., Yousefi Babadi, V., Espanani, H. R. (2015). Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy, 116(6), 373-378. doi:10.4149/bll_2015_071
Salimi, M., Sarkar, S., Fathi, S., Alizadeh, A. M., Saber, R., Moradi, F., Delavari, H. (2018). Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int J Nanomedicine, 13, 1483-1493. doi:10.2147/IJN.S157293
Shah, A., Dobrovolskaia, M. A. (2018). Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine, 14(3), 977-990. doi:10.1016/j.nano.2018.01.014
Shah, A., Mankus, C. I., Vermilya, A. M., Soheilian, F., Clogston, J. D., Dobrovolskaia, M. A. (2018). Feraheme(R) suppresses immune function of human T lymphocytes through mitochondrial damage and mitoROS production. Toxicol Appl Pharmacol, 350, 52-63. doi:10.1016/j.taap.2018.04.028
Shen, C. C., Liang, H. J., Wang, C. C., Liao, M. H., Jan, T. R. (2011). A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine, 6, 2791-2798. doi:10.2147/IJN.S25588
Shen, C. C., Liang, H. J., Wang, C. C., Liao, M. H., Jan, T. R. (2012). Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine, 7, 2729-2737. doi:10.2147/IJN.S31054
Shen, C. C., Wang, C. C., Liao, M. H., Jan, T. R. (2011). A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine, 6, 1229-1235. doi:10.2147/IJN.S21019
Singh, R., Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Exp Mol Pathol, 86(3), 215-223. doi:10.1016/j.yexmp.2008.12.004
Strachan-Whaley, M., Rivest, S., Yong, V. W. (2014). Interactions between microglia and T cells in multiple sclerosis pathobiology. J Interferon Cytokine Res, 34(8), 615-622. doi:10.1089/jir.2014.0019
Sulakhiya, K., Kumar, P., Jangra, A., Dwivedi, S., Hazarika, N. K., Baruah, C. C., Lahkar, M. (2014). Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol, 744, 124-131. doi:10.1016/j.ejphar.2014.09.049
Sun, J., Li, J., Liu, Q., Jiang, M., Yang, M., Zhan, S., . . . Zhang, X. (2020). Tuning mPEG-PLA/vitamin E-TPGS-based mixed micelles for combined celecoxib/honokiol therapy for breast cancer. Eur J Pharm Sci, 146, 105277. doi:10.1016/j.ejps.2020.105277
Svensson, L., Abdul-Majid, K. B., Bauer, J., Lassmann, H., Harris, R. A., Holmdahl, R. (2002). A comparative analysis of B cell-mediated myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis pathogenesis in B cell-deficient mice reveals an effect on demyelination. Eur J Immunol, 32(7), 1939-1946. doi:10.1002/1521-4141(200207)32:7<1939::AID-IMMU1939>3.0.CO;2-S
Tam, V. H., Sosa, C., Liu, R., Yao, N., Priestley, R. D. (2016). Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier. Int J Pharm, 515(1-2), 331-342. doi:10.1016/j.ijpharm.2016.10.031
Tang, P., Sun, Q., Yang, H., Tang, B., Pu, H., Li, H. (2018). Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm, 545(1-2), 74-83. doi:10.1016/j.ijpharm.2018.04.060
Tate, J. A., Petryk, A. A., Giustini, A. J., Hoopes, P. J. (2011). In vivo biodistribution of iron oxide nanoparticles: an overview. Proc SPIE Int Soc Opt Eng, 7901, 790117. doi:10.1117/12.876414
Thorek, D. L. J., Weisshaar, C. L., Czupryna, J. C., Winkelstein, B. A., Tsourkas, A. (2011). Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging of Neuroinflammation in a Rat Model of Radicular Pain. Molecular Imaging, 10(3). doi:10.2310/7290.2010.00042
Toblli, J. E., Cao, G., Giani, J. F., Dominici, F. P., Angerosa, M. (2017). Markers of oxidative/nitrosative stress and inflammation in lung tissue of rats exposed to different intravenous iron compounds. Drug Des Devel Ther, 11, 2251-2263. doi:10.2147/DDDT.S132612
Toblli, J. E., Cao, G., Rico, L., Angerosa, M. (2017). Cardiovascular, liver, and renal toxicity associated with an intravenous ferric carboxymaltose similar versus the originator compound. Drug Des Devel Ther, 11, 3401-3412. doi:10.2147/DDDT.S151162
Ugga, L., Romeo, V., Tedeschi, E., Brunetti, A., Quarantelli, M. (2018). Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods, 310, 12-23. doi:10.1016/j.jneumeth.2018.06.008
Van den Brule, S., Ambroise, J., Lecloux, H., Levard, C., Soulas, R., De Temmerman, P. J., . . . Lison, D. (2016). Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol, 13(1), 38. doi:10.1186/s12989-016-0149-1
Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C., Pasquali, M. (2015). Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano, 9(4), 4465-4474. doi:10.1021/acsnano.5b01060
Wang, B., Feng, W., Zhu, M., Wang, Y., Wang, M., Gu, Y., . . . Wang, H. (2008). Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 11(1), 41-53. doi:10.1007/s11051-008-9452-6
Wang, B., Feng, W. Y., Wang, M., Shi, J. W., Zhang, F., Ouyang, H., . . . Wang, J. (2007). Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res, 118(3), 233-243. doi:10.1007/s12011-007-0028-6
Wang, D., Dong, X., Wang, C. (2018). Honokiol Ameliorates Amyloidosis and Neuroinflammation and Improves Cognitive Impairment in Alzheimer's Disease Transgenic Mice. J Pharmacol Exp Ther, 366(3), 470-478. doi:10.1124/jpet.118.248674
Wang, X., Deng, L., Cai, L., Zhang, X., Zheng, H., Deng, C., . . . Chen, L. (2011). Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-beta-cyclodextrin-in-liposome. J Pharm Sci, 100(8), 3357-3364. doi:10.1002/jps.22534
Wang, X., Duan, X., Yang, G., Zhang, X., Deng, L., Zheng, H., . . . Chen, L. (2011). Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One, 6(4), e18490. doi:10.1371/journal.pone.0018490
Wang, X. D., Wang, Y. L., Gao, W. F. (2015). Honokiol possesses potential anti-inflammatory effects on rheumatoid arthritis and GM-CSF can be a target for its treatment. Int J Clin Exp Pathol, 8(7), 7929-7936.
Wang, X. H., Cai, L. L., Zhang, X. Y., Deng, L. Y., Zheng, H., Deng, C. Y., . . . Chen, L. J. (2011). Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int J Pharm, 410(1-2), 169-174. doi:10.1016/j.ijpharm.2011.03.003
Wang, Y., Wang, B., Zhu, M. T., Li, M., Wang, H. J., Wang, M., . . . Zhao, Y. L. (2011). Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett, 205(1), 26-37. doi:10.1016/j.toxlet.2011.05.001
Wang, Y. X., Idee, J. M. (2017). A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg, 7(1), 88-122. doi:10.21037/qims.2017.02.09
Wei, Y., Liao, R., Liu, H., Li, H., Xu, H., Zhou, Q. (2015). Biocompatible Low-Retention Superparamagnetic Iron Oxide Nanoclusters as Contrast Agents for Magnetic Resonance Imaging of Liver Tumor. J Biomed Nanotechnol, 11(5), 854-864. doi:10.1166/jbn.2015.2042
Wen, J., Wang, X., Pei, H., Xie, C., Qiu, N., Li, S., . . . Chen, L. (2015). Anti-psoriatic effects of Honokiol through the inhibition of NF-kappaB and VEGFR-2 in animal model of K14-VEGF transgenic mouse. J Pharmacol Sci, 128(3), 116-124. doi:10.1016/j.jphs.2015.05.008
Weng, T. I., Wu, H. Y., Chen, B. L., Liu, S. H. (2012). Honokiol attenuates the severity of acute pancreatitis and associated lung injury via acceleration of acinar cell apoptosis. Shock, 37(5), 478-484. doi:10.1097/SHK.0b013e31824653be
Woodbury, A., Yu, S. P., Chen, D., Gu, X., Lee, J. H., Zhang, J., . . . Wei, L. (2015). Honokiol for the Treatment of Neonatal Pain and Prevention of Consequent Neurobehavioral Disorders. J Nat Prod, 78(11), 2531-2536. doi:10.1021/acs.jnatprod.5b00225
Wu, F., Yao, H., Zheng, F., Tang, S., Lin, X., Li, L., . . . Li, H. (2018). Protective effects of honokiol against oxidative stress-induced apoptotic signaling in mouse podocytes treated with H2O2. Exp Ther Med, 16(2), 1278-1284. doi:10.3892/etm.2018.6313
Wu, H. Y., Chung, M. C., Wang, C. C., Huang, C. H., Liang, H. J., Jan, T. R. (2013). Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Particle and Fibre Toxicology.
Wu, J., Ding, T., Sun, J. (2013). Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology, 34, 243-253. doi:10.1016/j.neuro.2012.09.006
Yang, E. J., Lee, J. Y., Park, S. H., Lee, T., Song, K. S. (2013). Neuroprotective effects of neolignans isolated from Magnoliae Cortex against glutamate-induced apoptotic stimuli in HT22 cells. Food Chem Toxicol, 56, 304-312. doi:10.1016/j.fct.2013.02.035
Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Xiong, Y., Lai, W., . . . Wei, H. (2015). Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale, 7(2), 625-636. doi:10.1039/c4nr05061d
Yang, Y., Wang, T., Guan, J., Wang, J., Chen, J., Liu, X., . . . Zhan, C. (2019). Oral Delivery of Honokiol Microparticles for Nonrapid Eye Movement Sleep. Mol Pharm, 16(2), 737-743. doi:10.1021/acs.molpharmaceut.8b01016
Ye, J. S., Chen, L., Lu, Y. Y., Lei, S. Q., Peng, M., Xia, Z. Y. (2019a). Honokiol-Mediated Mitophagy Ameliorates Postoperative Cognitive Impairment Induced by Surgery/Sevoflurane via Inhibiting the Activation of NLRP3 Inflammasome in the Hippocampus. Oxid Med Cell Longev, 2019, 8639618. doi:10.1155/2019/8639618
Ye, J. S., Chen, L., Lu, Y. Y., Lei, S. Q., Peng, M., Xia, Z. Y. (2019b). SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci Ther, 25(3), 355-366. doi:10.1111/cns.13053
Yu, Q., Xiong, X. Q., Zhao, L., Xu, T. T., Bi, H., Fu, R., Wang, Q. H. (2018). Biodistribution and Toxicity Assessment of Superparamagnetic Iron Oxide Nanoparticles In Vitro and In Vivo. Curr Med Sci, 38(6), 1096-1102. doi:10.1007/s11596-018-1989-8
Yu, R., Zou, Y., Liu, B., Guo, Y., Wang, X., Han, M. (2019). Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf B Biointerfaces, 177, 1-10. doi:10.1016/j.colsurfb.2019.01.047
Yu, X., Wu, X., Si, Y., Wang, X., Yu, J., Ding, B. (2019). Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromol Rapid Commun, 40(8), e1800931. doi:10.1002/marc.201800931
Yu, Y., Li, M., Su, N., Zhang, Z., Zhao, H., Yu, H., Xu, Y. (2016). Honokiol protects against renal ischemia/reperfusion injury via the suppression of oxidative stress, iNOS, inflammation and STAT3 in rats. Mol Med Rep, 13(2), 1353-1360. doi:10.3892/mmr.2015.4660
Zendedel, A., Beyer, C., Kipp, M. (2013). Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci, 51(2), 567-572. doi:10.1007/s12031-013-0026-4
Zhang, B., Wang, P. P., Hu, K. L., Li, L. N., Yu, X., Lu, Y., Chang, H. S. (2019). Antidepressant-Like Effect and Mechanism of Action of Honokiol on the Mouse Lipopolysaccharide (LPS) Depression Model. Molecules, 24(11). doi:10.3390/molecules24112035
Zhang, P., Liu, X., Zhu, Y., Chen, S., Zhou, D., Wang, Y. (2013). Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-kappaB activation and cytokine production of glial cells. Neurosci Lett, 534, 123-127. doi:10.1016/j.neulet.2012.11.052
Zhao, M., Chang, J., Fu, X., Liang, C., Liang, S., Yan, R., Li, A. (2012). Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target, 20(5), 416-421. doi:10.3109/1061186X.2011.651726
Zhu, M., Li, Y., Shi, J., Feng, W., Nie, G., Zhao, Y. (2012). Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small, 8(3), 404-412. doi:10.1002/smll.201101708
Zhu, M., Tian, X., Song, X., Li, Y., Tian, Y., Zhao, Y., Nie, G. (2012). Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small, 8(18), 2841-2848. doi:10.1002/smll.201200381
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69505-
dc.description.abstract奈米科技被定義為「於奈米尺度的限制下,所發展出具有獨特性及可改善性能之技術」。在中樞神經疾病的診斷中,超順磁性奈米鐵具有多樣的檢測應用能力及治療潛力,舉例來說,奈米鐵的藥物製劑可作為核磁共振成像的顯影劑,協助評估血腦障壁破損面積及偵測多發性硬化症病患的神經發炎病灶位置。隨著其臨床應用廣泛,奈米鐵對神經免疫系統會造成的免疫毒性影響也日漸被關注。然而,奈米鐵對於中樞神經系統的報告大多都在探討其於正常健康小鼠或是細胞實驗中的毒性影響。因此,本研究利用模擬多發性硬化症之病程及其免疫機制的自體免疫腦脊髓炎小鼠模式,試著探討奈米鐵在神經發炎情況下所造成的潛在影響。結果顯示,以靜脈注射方式給予小鼠奈米鐵的後3天,其鐵離子可在腦及脊髓中被偵測到,並且,單劑量奈米鐵的給予顯著地加劇小鼠之臨床症狀、神經去髓鞘化及發炎細胞的浸潤現象,還伴隨著微膠細胞的活化及輔助性第一型T細胞的增生。此些結果證實,全身性奈米鐵的暴露可能會藉由促進微膠細胞及輔助第一型T細胞的活化,進而加劇自體免疫腦脊髓炎小鼠的症狀嚴重度。
多發性硬化症仍持續在尋求一個有效、便利及無毒性的治療方式,和朴酚已被證實具有抗發炎及神經保護的能力,然而,和朴酚的不溶於水特質及無法以靜脈注射方式給予的不便利性,大幅阻礙其臨床應用價值。因此,本研究嘗試以奈米微脂體當作藥物載體,探討以靜脈注射方式給予奈米化和朴酚對於自體免疫腦脊髓炎小鼠的治療效果。結果顯示奈米化和朴酚減緩其疾病嚴重度,並且降低神經去髓鞘化和發炎細胞的浸潤,同時也抑制活化的微膠細胞及輔助性第一型T細胞浸潤至腦脊髓炎小鼠的脊髓中。由結果得知,奈米化和朴酚可藉由調控微膠細胞及輔助性第一型T細胞的活化進一步減緩腦脊髓炎所造成的症狀。
總結以上,本論文旨在探討奈米鐵及奈米化和朴酚於神經發炎情況下的影響。有鑑於免疫毒性研究結果指出,奈米鐵對於自體免疫腦脊髓炎的促神經發炎作用,可能會對多發性硬化症病患的神經免疫系統帶來潛在的免疫毒性隱憂。並且,經由免疫藥理研究證實,此奈米化和朴酚劑型有望成為未來治療多發性硬化症的一個前瞻性策略。
zh_TW
dc.description.abstractNanotechnology is defined as the development of strategy with special and improved properties under nanoscale confinement. Superparamagnetic iron oxide nanoparticles (IONP) possessed various diagnostic and promising therapeutic applications in the treatment of central nervous system (CNS) diseases. For example, IONP have been extensively utilized as contrast agents for magnetic resonance imaging (MRI) to assess the integrity of blood-brain barrier and monitor the inflammation status in patients with multiple sclerosis (MS). With the increasing application, the immunotoxic impact of IONP exposure on the neuroimmune homeostasis of the CNS had been concerned. However, most of the studies primarily addressed the effects of IONP on cell cultures or healthy animals. Hence, in the study, we tried to explore the potential impact of IONP on neuroinflammation in a murine model of experimental autoimmune encephalomyelitis (EAE), which mimics many characteristic inflammatory features of MS. Results showed that iron content were examined in both the brain and spinal cord of EAE mice 3 days after intravenous injection of IONP. A single dose of IONP aggravated the clinical symptoms, accompanied by marked demyelination and the infiltration of inflammatory cells. Furthermore, IONP treatment increased the activation of microglia and the number of T helper (Th) 1 cells in the spinal cords of EAE mice. These results demonstrated that systemic exposure to IONP might augment the disease severity of EAE by promoting the activation of microglia and Th1 cells.
On the other side, there is ongoing research looking for more effective, convenient, no toxicity treatments for MS. Honokiol (HNK) has been found to exhibit stronger anti-inflammatory and neuroprotective effects. However, the application of honokiol is limited due to its poor water solubility and viability for intravenous administration. Hence, nanosomes as delivery vehicles were developed for the intravenous injection of HNK to study its therapeutic efficacy on EAE. NHNK ameliorated the clinical symptoms accompanied by the decreased demyelination and inflammatory cell infiltration. Moreover, the number of activated microglia and Th1 cells in the spinal cords of EAE mice was reduced by NHNK treatment. These results indicate that NHNK reduced the infiltration of activated microglia and Th1 cells into spinal cords, and caused the improvement of the severity of EAE.
In summary, the present study demonstrated the impacts of nanomaterials, including IONP and NHNK, on the murine model of EAE. The immunotoxic study points out that the pro-inflammatory effects of IONP on neuroinflammation associated with EAE implicates as a potential risk of IONP exposure on neuroimmunity in patients with MS. The immunopharmaceutical study points out that the formulation of NHNK is a promising therapeutic strategy for inflammatory CNS diseases, such as MS.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:17:38Z (GMT). No. of bitstreams: 1
U0001-1808202012261200.pdf: 24730607 bytes, checksum: 9641c783e40b20cdbf87fde702fdb090 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 iii
Abstract v
圖目錄 ix
表格目錄 x
補充資料目錄 xi
專有名詞中英文對照表 xii
Chapter 1 介紹 1
1.1 奈米材料 1
1.2 氧化鐵奈米粒子 2
1.2.1 醫療應用 2
1.2.2 潛在危害 2
1.3 和朴酚 5
1.3.1 厚朴 5
1.3.2 免疫調節能力 5
1.4 多發性硬化症 8
Chapter 2 實驗假說及研究動機 10
Chapter 3 材料與方法 11
3.1 化學試劑 11
3.2 奈米化和朴酚的製備及分析 11
3.3 實驗用自體免疫腦脊髓炎小鼠 11
3.3.1 小鼠品系及飼養方式 12
3.3.2 發病誘導及評分標準 12
3.3.3 試驗設計 12
3.4 普魯士藍染色 15
3.5 蘇木精-伊紅(H E)染色 15
3.6 Luxol fast blue 髓鞘染色 15
3.7 免疫組織化學染色 16
3.8 製備微膠細胞 16
3.9 置備抗原專一性的T細胞 17
3.10 細胞共同培養 17
3.11 統計分析 17
Chapter 4 實驗結果 18
4.1 自體免疫腦脊髓炎小鼠模式建立 18
4.2 免疫毒理研究-奈米鐵 22
4.2.1 中樞神經組織的鐵離子分布 22
4.2.2 奈米鐵加劇腦脊髓炎小鼠的疾病嚴重度 24
4.2.3 奈米鐵提升腦脊髓炎小鼠的神經發炎 28
4.2.4 奈米鐵誘使CD3+IFN-γ+輔助性第一型T細胞浸潤 31
4.3 免疫藥理研究-奈米化和朴酚 34
4.3.1 奈米化和朴酚的奈米特性 34
4.3.2 奈米化和朴酚減緩脊髓炎小鼠的疾病嚴重度 36
4.3.3 奈米化和朴酚減緩神經發炎的反應 40
4.3.4 奈米化和朴酚減少CD3+IFN-γ+輔助性第一型T細胞浸潤 43
Chapter 5 討論 48
5.1 奈米鐵之免疫毒理研究 48
5.2 奈米化和朴酚之免疫藥理研究 52
Chapter 6 結論 55
Chapter 7 未來展望 57
7.1 奈米鐵 57
7.2 奈米化和朴酚 59
Chapter 8 參考文獻 61
Chapter 9 附錄 76
dc.language.isozh-TW
dc.subject微膠細胞zh_TW
dc.subject多發性硬化症zh_TW
dc.subject輔助性第一型T細胞zh_TW
dc.subject奈米微脂體zh_TW
dc.subject實驗用自體免疫腦脊髓炎zh_TW
dc.subject和朴酚zh_TW
dc.subject氧化鐵奈米粒子zh_TW
dc.subjecthonokiolen
dc.subjectT helper 1 cellsen
dc.subjectmultiple sclerosisen
dc.subjectmicrogliaen
dc.subjectiron oxide nanoparticleen
dc.subjectnanosomeen
dc.subjectexperimental autoimmune encephalomyelitisen
dc.title利用自體免疫腦脊髓炎小鼠模式探討奈米物質於神經發炎的影響zh_TW
dc.titleApplication of a murine model of experimental autoimmune encephalomyelitis for studying the impact of nanomaterials on neuroinflammationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee梁有志(Yu-Chih Liang),梁弘人(Hong-Jen Liang),王家琪(Chia-Chih Wang),蔡沛學(Pei-shiue Tsai),吳欣穎(Hsin-Yin Wu)
dc.subject.keyword實驗用自體免疫腦脊髓炎,和朴酚,氧化鐵奈米粒子,微膠細胞,多發性硬化症,奈米微脂體,輔助性第一型T細胞,zh_TW
dc.subject.keywordexperimental autoimmune encephalomyelitis,honokiol,iron oxide nanoparticle,microglia,multiple sclerosis,nanosome,T helper 1 cells,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202003949
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1808202012261200.pdf
  未授權公開取用
24.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved