請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69504完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡克銓(KEH-CHYUAN TSAI) | |
| dc.contributor.author | Li-Wei Chen | en |
| dc.contributor.author | 陳力維 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:17:36Z | - |
| dc.date.available | 2018-07-19 | |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-02 | |
| dc.identifier.citation | Reference
1. Abaqus. Abaqus Version 6.13 Documentation. Dassault Systemes Simulia Corp.: Providence, RI, 2013. 2. American Concrete Institute (ACI). Building Code Requirements for Structural Concrete and Commentary (ACI 318-14). ACI: Farmington Hills, Michigan, 2014. 3. American Institute of Steel Construction (AISC). Seismic Provisions for Structural Steel Buildings (AISC 341-10). AISC: Chicago, Illinois, 2010. 4. American Institute of Steel Construction (AISC). Specification for Structural Steel Buildings (AISC 360-10). AISC: Chicago, Illinois, 2010. 5. Brace on Demand. User guide for BOD: Buckling restrained braces and connections design procedures. National Center for Research on Earthquake Engineering, Taiwan, 2014. 6. Chuang MC, Tsai KC, Lin PC, Wu AC. Critical limit states in seismic buckling-restrained brace and connection design. Earthquake Engineering & Structural Dynamics 2015; 44(10): 1559-1579. 7. Chou CC, Liu JH, Pham DH. Steel buckling-restrained braced frames with single and dual corner gusset connections: seismic tests and analyses. Earthquake Engineering and Structural Dynamics 2012; 41(7): 1137-1156. 8. Lin PC. Research and development of thin buckling restrained braces for seismic buildings. Master thesis. National Taiwan University, Taipei, Taiwan, 2010. 9. Lin PC, Tsai KC, Wang KJ, Yu YJ, Wei CY, Wu AC, Tsai CY, Lin CH, Chen JC, Schellenberg AH, Mahin SA, Roeder CW. Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile. Earthquake Engineering and Structural Dynamics 2012; 41(5): 1001-1020. 10. Lin, T.H., Chen, P.C. and Lin, K.C. The Multi-Axial Testing System (MATS) in Taiwan NCREE. Earthquakes and Structures, an International Journal 2017. DOI: 10.12989/eas.2017.13.2.165 11. Matsui R, Takeuchi T, Nishimoto K, Takahashi S, Ohyama T. Effective buckling length of buckling-restrained brace considering rotational stiffness at restrainer ends. 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering Proceedings(5ICEE), Tokyo, Japan, 2010. 12. Merritt S, Uang C-M, Benzoni G. Subassemblage testing of CoreBrace buckling-restrained braces. Report No. TR-2003/01, University of California, San Diego, 2003. 13. Prinz GS, Richards PW, Fremming S. Seismic response of buckling-restrained frames with beam splices. 14th world Conference on Earthquake Engineering, Beijing, China, 2008. 14. SAP 2000. SAP 2000 Version 15.0.0 Documentation. Computers & Structures Inc., 2011. 15. Takeuchi T, Ozaki H, Matsui R, Sutcu F. Out-of-plane stability assessment of buckling restrained braces including moment transfer capacity at restrainer-end. Journal of Structural and Construction Engineering 2013; 78:1621-1630. (in Japanese) 16. Takeuchi T, Ozaki H, Matsui R, Sutcu F. Out-of-plane stability of buckling-restrained brace including moment transfer capacity. Earthquake Engineering & Structural Dynamics 2014; 43(6): 851-869. 17. Takeuchi T, Ozaki H, Matsui R, Sutcu F. Out-of-plane stability assessment of buckling-restrained brace including connections with chevron configuration. Earthquake Engineering & Structural Dynamics 2016; 45(12): 1895-1917. 18. Tsai KC, Hsiao PC, Wang KC, Weng YT, Lin ML, Lin KC, Chen CH, Lai JC, Lin SL. Pseudo-dynamic tests of a full-scale CFT/BRB frame -Part I: Specimen design, experiment and analysis. Earthquake Engineering & Structural Dynamics 2008; 37:1081-1098. 19. Tsai KC, Hsiao PC. Pseudo-dynamic tests of a full-scale CFT/BRB frame -Part II: Seismic performance of buckling restrained braces and connections. Earthquake Engineering & Structural Dynamics 2008; 37:1099-1115. 20. Tsai KC, Wu AC, Wei CY, Lin PC, Chuang MC, Yu YJ. Welded end-slot connection and debonding layers for buckling restrained braces. Earthquake Engineering & Structural Dynamics 2014; 43:1785-1807. 21. Tsai CY, Chen LW, Wu AC, Tsai KC. Seismic performance analysis of BRBs and gussets in a full-scale two-story BRB-RCF Specimen. Earthquake Engineering & Structural Dynamics 2018. (in review) 22. Uang C-M, Nakashima M. Steel buckling-restrained braced frames. In Earthquake Engineering from Engineering Seismology to Performance-based Engineering, Chapter 16, Bozorgnia Y, Bertero VV (eds.). CRC Press LLC: Boca Raton, FL, 2003; 16-1–16-37. 23. Wu AC, Tsai KC, Yang HH, Huang JL, Li CY, Wang KJ, Khoo HH. Hybrid experimental performance of a full-scale two-story buckling-restrained braced RC frame. Earthquake Engineering & Structural Dynamics 2016; 46(8):1223-1244. 24. Zaboli B, Clifton C, Cowie K. Out-of-plane stability of gusset plates using a simplified notional load yield line method. NZSEE Annual Technical Conference and 15th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Wellington, New Zealand, 2017. 25. Zhao J, Wu B, and Ou J. A practical and unified global stability design method of buckling-restrained brace: discussion on pinned connections. Journal of Constructional Steel Research 2014; 95: 106-115. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69504 | - |
| dc.description.abstract | 摘要
由於挫曲束制斜撐(BRB) 能大幅提升結構之勁度、強度與韌性,含BRB之構架(BRBF)經濟性與良好耐震消能行為已獲肯定。近年來已被廣泛應用於鋼建築結構系統之中。然而,由於其斷面變化及圍束不連續的特徵,於先前研究中BRB整體面外挫曲的情況時有所聞。過去對於BRB整體面外穩定性雖已有相當之研究,但現行習見之評估方法運用三項檢核,分別檢討圍束鋼管、連接段與接合板穩定性;唯此方法未考量彼此之間的互制效果,以及施工誤差及面外變位等影響穩定性的參數;此方法亦未對於BRB的有效長度作嚴謹的定義。有鑑於此,本研究之宗旨在於根據力學模型與理論,提出可靠之BRB整體面外穩定性評估模型。 日本 Takeuchi教授等人根據BRB及其接合板於挫曲時的塑性變形行為,推導出一系列之挫曲強度預測模型。基於Takeuchi教授等人提出之模型,並考量槽接式挫曲束制斜撐(WES-BRB)圍束單元較長之特徵,本研究提出考量圍束單元撓曲效應及接合板旋轉效應的BRB挫曲強度預測模型。由模型發現,圍束單元的尺寸與圍束單元內充水泥砂漿或混凝土之貢獻是影響整體穩定性的關鍵參數。本研究亦使用有限元素模型分析接合板的面外旋轉勁度與強度,及初始端部面外錯位、初始圍束單元面外變形對整體穩定性之影響。並提出計算接合板力學參數及因初始面外錯位、變形造成額外端部彎矩需求之建議公式。 為驗證模型之可靠度,本研究設計了四組圍束單元尺寸不一、接合板厚度不一以及有無接合板加勁板,總長5.8公尺、100噸級標稱降伏強度之WES-BRB試體。於國家地震工程研究中心的多軸向試驗系統(MATS)進行反覆載重測試。本研究針對其中一組試體施加1%試體總長之端部面外錯位,藉比對有無面外錯位之實際挫曲強度,來探討其對整體穩定性之影響。 實驗結果證明,預測強度與實際挫曲強度僅6%之誤差。若於接合板長邊配置加勁板,則實際挫曲強度上升13%。1%試體總長之端部面外錯位造成9%之挫曲強度損失。若圍束單元管徑增加24%,預測之挫曲強度將大幅上升80%。由光學量測結果顯示,隨著軸力上升,初始面外端部錯位會導致較嚴重的面外變形,而大幅增加挫曲趨勢。實驗中亦發現BRB試體圍束單元的初始面外變形比預期更嚴重。這應是在試體養護、運送或安裝過程中,不當的吊裝所造成。本研究所提出之BRB整體面外穩定性評估模型,能應用於實際BRBF設計,防止BRB面外挫曲。 | zh_TW |
| dc.description.abstract | Abstract
Buckling-restrained braces (BRBs) have been widely used as cost-effective energy dissipaters for seismic steel buildings. However, several cases of out-of-plane (OOP) instability have been observed from past researches. In a prior research, a BRB specimen installed on first floor buckled with severe flexural deformation along the restrainer and plastic hinges forming at gussets during a full scale two-story RC frame test. Simplified procedures commonly applied could predict the high possibility of the buckling. These procedures are based on three independent stability assessments for the steel casing, the connection and the gusset respectively. Nevertheless, these three separate stability checks do not consider their coupling effects on the overall stability. Furthermore, the procedures appear to be over-simplified, using unreasonable assumptions on the end conditions. Takeuchi et al. proposed a set of advanced procedures to measure the global OOP stability. However, their buckling models cannot predict the aforementioned failure mode. This study adopts Takeuchi’s procedures and proposes a buckling model considering flexural restrainer and gusset rotations. In addition, evaluation methods are developed for FEM analysis in order to compute the gussets’ rotational stiffness and strength, as well as the additional moment demand at gussets caused by OOP end drift and initial imperfection along BRB restrainer. In order to verify the effectiveness of the proposed procedures, four full-scale BRB specimens each of 5.8m long with a 988-kN nominal yielding strength, varying restrainer stiffness, gusset thicknesses, with/without edge stiffeners or OOP drift demands were tested. The proposed model satisfactorily predicts specimens’ failure modes and buckling strengths with errors less than 6%. Test results show a 9% drop in buckling strength due to a 57-mm OOP end drift. Edge stiffeners detailed on the gussets’ long sides improved the buckling strength by 9%. The proposed model exhibits an improvement of over 80% in the buckling strength with a 24% enlargement in the restrainer diameter, indicating the critical effects of the restrainer’s flexural stiffness. The deformed shapes of specimens throughout the loading indicate that OOP drift tends to trigger more severe flexural deformation as axial loading increases, leading to a higher buckling potential. In addition, the initial imperfection along BRB restrainer was larger than expected due to improper supporting condition during mortar curing, shipping and handling. The research results can be adopted to improve the practice of BRB frame design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:17:36Z (GMT). No. of bitstreams: 1 ntu-107-R04521250-1.pdf: 8106430 bytes, checksum: f2fda8bdae071969de89c7409691f49c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of Contents
口試委員會審定書 I Acknowledgement II 摘要 III Abstract IV Table of Contents V List of Tables IX List of Figures X List of Pictures XIV Chapter 1. Introduction 1 1.1 General 1 1.2 Objectives 3 1.3 Thesis Organization 5 Chapter 2. Background and Literature Review 7 2.1 Buckling-Restrained Braces 7 2.1.1 General 7 2.1.2 Layouts 8 2.2 Former researches 12 2.2.1 Matsui et al. (2010) 12 2.2.2 Zhao et al. (2014) 13 2.2.3 Chuang et al. (2015) 14 2.2.4 Wu et al. (2016) 16 Chapter 3. Analytical Model 18 3.1 The Procedures Proposed by Takeuchi et al. 18 3.2 The Proposed Buckling Model 20 3.2.1 General 20 3.2.2 The Flexural Effects of Restrainers 21 3.2.3 Out-of-Plane Deformation along BRBs 21 3.2.4 Derivation 23 3.3 The Rotational Springs at gussets 29 3.3.1 The ABAQUS Model 29 3.3.2 The Assessment of the Springs 30 3.4 Example Application 31 3.4.1 General 31 3.4.2 Dimensions 32 3.4.3 Total Initial Imperfection 33 3.4.4 Springs at the Restrainer Ends 34 3.4.5 Springs at the Gussets 35 3.4.6 Global Elastic Buckling Strength Considering 4 Springs 36 3.4.7 Global Elastic Buckling Strength with Pin Conditions at BRB Ends 36 3.4.8 The Additional Moment Demand Caused by Initial Imperfection and Out-of-Plane Drift 37 3.4.9 Evaluation Result 38 Chapter 4. Experimental Program 39 4.1 General 39 4.2 Specimens 39 4.2.1 Specimen Designs 39 4.2.2 Specimen Fabrication 42 4.3 Test Set-up 43 4.4 Instrumentation 45 4.5 Loading Protocol 47 Chapter 5. Experiment Results and Discussions 49 5.1 Coupon Tests 49 5.1.1 The Material of the Core Member 49 5.1.2 The Material of Gussets 49 5.1.3 The Material of the Restrainer 50 5.2 The Elastic Modulus of Infilled Mortar 50 5.3 The Axial Force 51 5.4 Specimen Performances 52 5.4.1 Specimen G18 52 5.4.2 Specimen G16 53 5.4.3 Specimen G18_LC 54 5.4.4 Specimen G16_ES 55 5.5 Discussions of Analytical and Experimental Results 56 5.5.1 The Experimental Out-of-Plane Deformed Shape 57 5.5.2 Specimen Design Reviews Using the Proposed Stability Model 58 5.5.3 Effects of Out-of-Plane End Drift 63 5.5.4 Effects of Restrainer Flexural Stiffness 64 5.5.5 Effects of Gusset Thickness and Edge Stiffeners 64 5.5.6 Seismic Design Implications 65 Chapter 6. Summary and Conclusions 67 6.1 Summery 67 6.2 Conclusions 68 6.3 Recommendation 69 Reference 72 | |
| dc.language.iso | en | |
| dc.subject | 鋼結構耐震設計 | zh_TW |
| dc.subject | 挫曲束制支撐 | zh_TW |
| dc.subject | 反覆荷載試驗 | zh_TW |
| dc.subject | 接合板挫曲 | zh_TW |
| dc.subject | 圍束單元撓曲效應 | zh_TW |
| dc.subject | 面外穩定性 | zh_TW |
| dc.subject | buckling restrained brace | en |
| dc.subject | out-of-plane stability | en |
| dc.subject | flexural effect of restrainer | en |
| dc.subject | gusset rotation | en |
| dc.subject | cyclic loading test | en |
| dc.subject | Seismic design of steel building structure | en |
| dc.title | 考量挫曲束制斜撐圍束單元撓曲之整體面外穩定性研究 | zh_TW |
| dc.title | A Study of Global Out-of-Plane Stability Model for BRBs Incorporating the Flexural Effects of Restrainers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭博謙(PO-CHIEN HSIAO),陳垂欣(CHUI-HSIN CHEN) | |
| dc.subject.keyword | 挫曲束制支撐,面外穩定性,圍束單元撓曲效應,接合板挫曲,反覆荷載試驗,鋼結構耐震設計, | zh_TW |
| dc.subject.keyword | buckling restrained brace,out-of-plane stability,flexural effect of restrainer,gusset rotation,cyclic loading test,Seismic design of steel building structure, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU201801210 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
